BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 14587079)

  • 1. In vivo monitoring of chlorophyll fluorescence response to low-dose gamma-irradiation in pumpkin (cucurbita pepo) leaves.
    Jovanić BR; Dramićanin MD
    Luminescence; 2003; 18(5):274-7. PubMed ID: 14587079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the room-temperature emission spectrum of chlorophyll during fast and slow phases of the Kautsky effect in intact leaves.
    Franck F; Dewez D; Popovic R
    Photochem Photobiol; 2005; 81(2):431-6. PubMed ID: 15584772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Re-absorption of chlorophyll fluorescence in leaves revisited. A comparison of correction models.
    Cordón GB; Lagorio MG
    Photochem Photobiol Sci; 2006 Aug; 5(8):735-40. PubMed ID: 16886088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of epidermal phenolic compounds to light acclimation: in vivo qualitative and quantitative assessment using chlorophyll fluorescence excitation spectra in leaves of three woody species.
    Bidel LP; Meyer S; Goulas Y; Cadot Y; Cerovic ZG
    J Photochem Photobiol B; 2007 Sep; 88(2-3):163-79. PubMed ID: 17720509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance.
    Campbell PK; Middleton EM; Corp LA; Kim MS
    Sci Total Environ; 2008 Oct; 404(2-3):433-9. PubMed ID: 18164750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of gamma-irradiated melon, pumpkin, and sunflower seeds by electron paramagnetic resonance spectroscopy and gas chromatography-mass spectrometry.
    Sin DW; Wong YC; Yao WY
    J Agric Food Chem; 2006 Sep; 54(19):7159-66. PubMed ID: 16968077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UV screening in higher plants induced by low temperature in the absence of UV-B radiation.
    Bilger W; Rolland M; Nybakken L
    Photochem Photobiol Sci; 2007 Feb; 6(2):190-5. PubMed ID: 17277843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructural localization of glutathione in Cucurbita pepo plants.
    Müller M; Zechmann B; Zellnig G
    Protoplasma; 2004 Jun; 223(2-4):213-9. PubMed ID: 15221527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic capacity of Arabidopsis plants at the reproductive stage tolerates γ irradiation.
    Kim JH; Moon YR; Lee MH; Kim JH; Wi SG; Park BJ; Kim CS; Chung BY
    J Radiat Res; 2011; 52(4):441-9. PubMed ID: 21785233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser-induced fluorescence ratios of Cajanus cajan L. under the stress of cadmium and its correlation with pigment content and pigment ratios.
    Maurya R; Gopal R
    Appl Spectrosc; 2008 Apr; 62(4):433-8. PubMed ID: 18416903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of a highly sensitive two-dimensional luminescence imaging system to monitor endogenous bioluminescence in plant leaves.
    Flor-Henry M; McCabe TC; de Bruxelles GL; Roberts MR
    BMC Plant Biol; 2004 Nov; 4():19. PubMed ID: 15550176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of leaf cytology and anatomy in Brassica napus grown under above ambient levels of supplemental UV-B radiation.
    Fagerberg WR; Bornman JF
    Photochem Photobiol Sci; 2005 Mar; 4(3):275-9. PubMed ID: 15738995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A five-year study of solar ultraviolet radiation in southern Chile (39 degrees S): potential impact on physiology of coastal marine algae?
    Huovinen P; Gómez I; Lovengreen C
    Photochem Photobiol; 2006; 82(2):515-22. PubMed ID: 16613507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ionizing radiation exposure on Arabidopsis thaliana.
    Kurimoto T; Constable JV; Huda A
    Health Phys; 2010 Jul; 99(1):49-57. PubMed ID: 20539124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Fluorescence, excited by light in the 380-540 nm wavelength range, in in cucumber leaves depends on the time of vegetation and light regime].
    Zavoruev VV; Zavorueva EN; Shelegov AV
    Biofizika; 2000; 45(4):704-11. PubMed ID: 11040981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Fluorescence parameters of chlorophyll in leaves of caules plants in different environmental conditions].
    Iakovleva OV; Talipova EV; Kukarskikh GP; Krendeleeva TE; Rubin AB
    Biofizika; 2005; 50(6):1112-9. PubMed ID: 16358792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic profile of Arabidopsis rosette leaves during the reproductive stage after exposure to ionizing radiation.
    Kim JH; Moon YR; Kim JS; Oh MH; Lee JW; Chung BY
    Radiat Res; 2007 Sep; 168(3):267-80. PubMed ID: 17705638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Very low dose gamma irradiation stimulates gaseous exchange and carboxylation efficiency, but inhibits vascular sap flow in groundnut (Arachis hypogaea L.).
    Ahuja S; Singh B; Gupta VK; Singhal RK; Venu Babu P
    Int J Radiat Biol; 2014 Feb; 90(2):179-86. PubMed ID: 24279367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [After effect of heat shock on induction of fluorescence and low temperature fluorescence spectra of wheat leaves].
    Kreslavskiĭ VD; Khristin MS
    Biofizika; 2003; 48(5):865-72. PubMed ID: 14582412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of gamma-irradiation on the biophysical and morphological properties of corn.
    Al-Salhi M; Ghannam MM; Al-Ayed MS; El-Kameesy SU; Roshdy S
    Nahrung; 2004 Apr; 48(2):95-8. PubMed ID: 15146964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.