These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 14587291)

  • 21. Serine and cysteine proteases are translocated to similar extents upon formation of covalent complexes with serpins. Fluorescence perturbation and fluorescence resonance energy transfer mapping of the protease binding site in CrmA complexes with granzyme B and caspase-1.
    Swanson R; Raghavendra MP; Zhang W; Froelich C; Gettins PG; Olson ST
    J Biol Chem; 2007 Jan; 282(4):2305-13. PubMed ID: 17142451
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How small peptides block and reverse serpin polymerisation.
    Zhou A; Stein PE; Huntington JA; Sivasothy P; Lomas DA; Carrell RW
    J Mol Biol; 2004 Sep; 342(3):931-41. PubMed ID: 15342247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Divining the serpin inhibition mechanism: a suicide substrate 'springe'?
    Engh RA; Huber R; Bode W; Schulze AJ
    Trends Biotechnol; 1995 Dec; 13(12):503-10. PubMed ID: 8595135
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Serpins: finely balanced conformational traps.
    Pike RN; Bottomley SP; Irving JA; Bird PI; Whisstock JC
    IUBMB Life; 2002 Jul; 54(1):1-7. PubMed ID: 12387568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human neuroserpin: structure and time-dependent inhibition.
    Ricagno S; Caccia S; Sorrentino G; Antonini G; Bolognesi M
    J Mol Biol; 2009 Apr; 388(1):109-21. PubMed ID: 19265707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Secondary structure changes stabilize the reactive-centre cleaved form of SERPINs. A study by 1H nuclear magnetic resonance and Fourier transform infrared spectroscopy.
    Perkins SJ; Smith KF; Nealis AS; Haris PI; Chapman D; Bauer CJ; Harrison RA
    J Mol Biol; 1992 Dec; 228(4):1235-54. PubMed ID: 1335516
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Serpinopathies and the conformational dementias.
    Lomas DA; Carrell RW
    Nat Rev Genet; 2002 Oct; 3(10):759-68. PubMed ID: 12360234
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thrombin inhibition by the serpins.
    Huntington JA
    J Thromb Haemost; 2013 Jun; 11 Suppl 1():254-64. PubMed ID: 23809129
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Serpin-glycosaminoglycan interactions.
    Rein CM; Desai UR; Church FC
    Methods Enzymol; 2011; 501():105-37. PubMed ID: 22078533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuroserpin Portland (Ser52Arg) is trapped as an inactive intermediate that rapidly forms polymers: implications for the epilepsy seen in the dementia FENIB.
    Belorgey D; Sharp LK; Crowther DC; Onda M; Johansson J; Lomas DA
    Eur J Biochem; 2004 Aug; 271(16):3360-7. PubMed ID: 15291813
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational changes in serpins and the mechanism of alpha 1-antitrypsin deficiency.
    Carrell RW; Whisstock J; Lomas DA
    Am J Respir Crit Care Med; 1994 Dec; 150(6 Pt 2):S171-5. PubMed ID: 7952655
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High resolution structure of cleaved Serpin 42 Da from Drosophila melanogaster.
    Ellisdon AM; Zhang Q; Henstridge MA; Johnson TK; Warr CG; Law RH; Whisstock JC
    BMC Struct Biol; 2014 Apr; 14():14. PubMed ID: 24758516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mobile reactive centre of serpins and the control of thrombosis.
    Carrell RW; Evans DL; Stein PE
    Nature; 1991 Oct; 353(6344):576-8. PubMed ID: 1922367
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of AlphaFold and molecular dynamics structure predictions of mutations in serpins.
    Garrido-Rodríguez P; Carmena-Bargueño M; de la Morena-Barrio ME; Bravo-Pérez C; de la Morena-Barrio B; Cifuentes-Riquelme R; Lozano ML; Pérez-Sánchez H; Corral J
    PLoS One; 2024; 19(7):e0304451. PubMed ID: 38968282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conformational changes in serpins: I. The native and cleaved conformations of alpha(1)-antitrypsin.
    Whisstock JC; Skinner R; Carrell RW; Lesk AM
    J Mol Biol; 2000 Feb; 296(2):685-99. PubMed ID: 10669617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational changes in serpins: I. The native and cleaved conformations of alpha(1)-antitrypsin.
    Whisstock JC; Skinner R; Carrell RW; Lesk AM
    J Mol Biol; 2000 Jan; 295(3):651-65. PubMed ID: 10623554
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions.
    Schreuder HA; de Boer B; Dijkema R; Mulders J; Theunissen HJ; Grootenhuis PD; Hol WG
    Nat Struct Biol; 1994 Jan; 1(1):48-54. PubMed ID: 7656006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformational changes in thrombin when complexed by serpins.
    Fredenburgh JC; Stafford AR; Weitz JI
    J Biol Chem; 2001 Nov; 276(48):44828-34. PubMed ID: 11584020
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structure of neuroserpin: a neuronal serpin involved in a conformational disease.
    Briand C; Kozlov SV; Sonderegger P; Grütter MG
    FEBS Lett; 2001 Sep; 505(1):18-22. PubMed ID: 11557034
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biological implications of a 3 A structure of dimeric antithrombin.
    Carrell RW; Stein PE; Fermi G; Wardell MR
    Structure; 1994 Apr; 2(4):257-70. PubMed ID: 8087553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.