These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 14587608)

  • 41. Effects of acoustic trauma on the representation of the vowel "eh" in cat auditory nerve fibers.
    Miller RL; Schilling JR; Franck KR; Young ED
    J Acoust Soc Am; 1997 Jun; 101(6):3602-16. PubMed ID: 9193048
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of speech by cochlear implant recipients with the Multipeak (MPEAK) and Spectral Peak (SPEAK) speech coding strategies. I. Vowels.
    Skinner MW; Fourakis MS; Holden TA; Holden LK; Demorest ME
    Ear Hear; 1996 Jun; 17(3):182-97. PubMed ID: 8807261
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The temporal representation of speech in a nonlinear model of the guinea pig cochlea.
    Holmes SD; Sumner CJ; O'Mard LP; Meddis R
    J Acoust Soc Am; 2004 Dec; 116(6):3534-45. PubMed ID: 15658705
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Responses of auditory-nerve fibers to consonant-vowel syllables.
    Sinex DG; Geisler CD
    J Acoust Soc Am; 1983 Feb; 73(2):602-15. PubMed ID: 6841800
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preferential and non-preferential transmission of formant information by an analogue cochlear implant using noise: the role of the nerve threshold.
    Morse RP; Evans EF
    Hear Res; 1999 Jul; 133(1-2):120-32. PubMed ID: 10416870
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synchrony capture filterbank: auditory-inspired signal processing for tracking individual frequency components in speech.
    Kumaresan R; Peddinti VK; Cariani P
    J Acoust Soc Am; 2013 Jun; 133(6):4290-310. PubMed ID: 23742379
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Human temporal auditory acuity as assessed by envelope following responses.
    Purcell DW; John SM; Schneider BA; Picton TW
    J Acoust Soc Am; 2004 Dec; 116(6):3581-93. PubMed ID: 15658709
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Additive noise can enhance temporal coding in a computational model of analogue cochlear implant stimulation.
    Morse RP; Evans EF
    Hear Res; 1999 Jul; 133(1-2):107-19. PubMed ID: 10416869
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simulating electrical modulation detection thresholds using a biophysical model of the auditory nerve.
    O'Brien GE; Imennov NS; Rubinstein JT
    J Acoust Soc Am; 2016 May; 139(5):2448. PubMed ID: 27250141
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Representation of stop consonants in the discharge patterns of auditory-nerve fibers.
    Miller MI; Sachs MB
    J Acoust Soc Am; 1983 Aug; 74(2):502-17. PubMed ID: 6619427
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Contribution of spectrotemporal features on auditory event-related potentials elicited by consonant-vowel syllables.
    Digeser FM; Wohlberedt T; Hoppe U
    Ear Hear; 2009 Dec; 30(6):704-12. PubMed ID: 19672195
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improved electrically evoked auditory steady-state response thresholds in humans.
    Hofmann M; Wouters J
    J Assoc Res Otolaryngol; 2012 Aug; 13(4):573-89. PubMed ID: 22569837
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Forward masking in different cochlear implant systems.
    Boëx C; Kós MI; Pelizzone M
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2058-65. PubMed ID: 14587605
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phase Locking of Auditory-Nerve Fibers Reveals Stereotyped Distortions and an Exponential Transfer Function with a Level-Dependent Slope.
    Peterson AJ; Heil P
    J Neurosci; 2019 May; 39(21):4077-4099. PubMed ID: 30867259
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Encoding and decoding amplitude-modulated cochlear implant stimuli--a point process analysis.
    Goldwyn JH; Shea-Brown E; Rubinstein JT
    J Comput Neurosci; 2010 Jun; 28(3):405-24. PubMed ID: 20177761
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Across-site patterns of modulation detection: relation to speech recognition.
    Garadat SN; Zwolan TA; Pfingst BE
    J Acoust Soc Am; 2012 May; 131(5):4030-41. PubMed ID: 22559376
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Time-domain analysis of auditory-nerve-fiber firing rates.
    Secker-Walker HE; Searle CL
    J Acoust Soc Am; 1990 Sep; 88(3):1427-36. PubMed ID: 2172344
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Psychometric functions and temporal integration in electric hearing.
    Donaldson GS; Viemeister NF; Nelson DA
    J Acoust Soc Am; 1997 Jun; 101(6):3706-21. PubMed ID: 9193058
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A computational study to model the effect of electrode-to-auditory nerve fiber distance on spectral resolution in cochlear implant.
    Yang H; Won JH; Choi I; Woo J
    PLoS One; 2020; 15(8):e0236784. PubMed ID: 32745116
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Speech recognition at simulated soft, conversational, and raised-to-loud vocal efforts by adults with cochlear implants.
    Skinner MW; Holden LK; Holden TA; Demorest ME; Fourakis MS
    J Acoust Soc Am; 1997 Jun; 101(6):3766-82. PubMed ID: 9193063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.