These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 14587609)

  • 1. An approximate transfer function for the dual-resonance nonlinear filter model of auditory frequency selectivity.
    Lopez-Poveda EA
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2112-7. PubMed ID: 14587609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on "An approximate transfer function for the dual-resonance nonlinear filter model of auditory frequency selectivity".
    Duifhuis H
    J Acoust Soc Am; 2004 May; 115(5 Pt 1):1889-90; author reply 1891. PubMed ID: 15139596
    [No Abstract]   [Full Text] [Related]  

  • 3. A phenomenological model for the responses of auditory-nerve fibers. II. Nonlinear tuning with a frequency glide.
    Tan Q; Carney LH
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2007-20. PubMed ID: 14587601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of cochlear processing for the formation of auditory brainstem and frequency following responses.
    Dau T
    J Acoust Soc Am; 2003 Feb; 113(2):936-50. PubMed ID: 12597187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nonlinear filter-bank model of the guinea-pig cochlear nerve: rate responses.
    Sumner CJ; O'Mard LP; Lopez-Poveda EA; Meddis R
    J Acoust Soc Am; 2003 Jun; 113(6):3264-74. PubMed ID: 12822799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation masking produced by complex tone modulators.
    Verhey JL; Ewert SD; Dau T
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2135-46. PubMed ID: 14587611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The temporal representation of speech in a nonlinear model of the guinea pig cochlea.
    Holmes SD; Sumner CJ; O'Mard LP; Meddis R
    J Acoust Soc Am; 2004 Dec; 116(6):3534-45. PubMed ID: 15658705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Further studies on the dual-resonance nonlinear filter model of cochlear frequency selectivity: responses to tones.
    Lopez-Najera A; Lopez-Poveda EA; Meddis R
    J Acoust Soc Am; 2007 Oct; 122(4):2124-34. PubMed ID: 17902850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending the domain of center frequencies for the compressive gammachirp auditory filter.
    Patterson RD; Unoki M; Irino T
    J Acoust Soc Am; 2003 Sep; 114(3):1529-42. PubMed ID: 14514206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cochlear nonlinearity between 500 and 8000 Hz in listeners with normal hearing.
    Lopez-Poveda EA; Plack CJ; Meddis R
    J Acoust Soc Am; 2003 Feb; 113(2):951-60. PubMed ID: 12597188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computer model of a cochlear-nucleus stellate cell: responses to amplitude-modulated and pure-tone stimuli.
    Hewitt MJ; Meddis R; Shackleton TM
    J Acoust Soc Am; 1992 Apr; 91(4 Pt 1):2096-109. PubMed ID: 1317896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rate and timing cues associated with the cochlear amplifier: level discrimination based on monaural cross-frequency coincidence detection.
    Heinz MG; Colburn HS; Carney LH
    J Acoust Soc Am; 2001 Oct; 110(4):2065-84. PubMed ID: 11681385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the combined effects of basilar membrane nonlinearity and roughness on stimulus frequency otoacoustic emission fine structure.
    Talmadge CL; Tubis A; Long GR; Tong C
    J Acoust Soc Am; 2000 Dec; 108(6):2911-32. PubMed ID: 11144584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dead regions and pitch perception.
    Huss M; Moore BC
    J Acoust Soc Am; 2005 Jun; 117(6):3841-52. PubMed ID: 16018486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression.
    Zhang X; Heinz MG; Bruce IC; Carney LH
    J Acoust Soc Am; 2001 Feb; 109(2):648-70. PubMed ID: 11248971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral pattern, harmonic relations, and the perceptual grouping of low-numbered components.
    Roberts B; Brunstrom JM
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2118-34. PubMed ID: 14587610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling auditory evoked brainstem responses to transient stimuli.
    Rønne FM; Dau T; Harte J; Elberling C
    J Acoust Soc Am; 2012 May; 131(5):3903-13. PubMed ID: 22559366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency selectivity of single cochlear-nerve fibers based on the temporal response pattern to two-tone signals.
    Greenberg S; Geisler CD; Deng L
    J Acoust Soc Am; 1986 Apr; 79(4):1010-9. PubMed ID: 3700856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational algorithm for computing nonlinear auditory frequency selectivity.
    Meddis R; O'Mard LP; Lopez-Poveda EA
    J Acoust Soc Am; 2001 Jun; 109(6):2852-61. PubMed ID: 11425128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computer model of medial efferent suppression in the mammalian auditory system.
    Ferry RT; Meddis R
    J Acoust Soc Am; 2007 Dec; 122(6):3519-26. PubMed ID: 18247760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.