These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 14587738)

  • 1. Bidentate ligands formed by self-assembly.
    Slagt VF; van Leeuwen PW; Reek JN
    Chem Commun (Camb); 2003 Oct; (19):2474-5. PubMed ID: 14587738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular bidentate phosphorus ligands based on bis-zinc(II) and bis-tin(IV) porphyrin building blocks.
    Slagt VF; van Leeuwen PW; Reek JN
    Dalton Trans; 2007 Jun; (22):2302-10. PubMed ID: 17534491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rigid bis-zinc(II) salphen building blocks for the formation of template-assisted bidentate ligands and their application in catalysis.
    Kuil M; Goudriaan PE; Kleij AW; Tooke DM; Spek AL; van Leeuwen PW; Reek JN
    Dalton Trans; 2007 Jun; (22):2311-20. PubMed ID: 17534492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-Selective Hydroformylation by a Rhodium Catalyst Confined in a Supramolecular Cage.
    Nurttila SS; Brenner W; Mosquera J; van Vliet KM; Nitschke JR; Reek JNH
    Chemistry; 2019 Jan; 25(2):609-620. PubMed ID: 30351486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the Porphyrin Building Block in Self-Assembled Cages for Branched-Selective Hydroformylation of Propene.
    Wang X; Nurttila SS; Dzik WI; Becker R; Rodgers J; Reek JNH
    Chemistry; 2017 Oct; 23(59):14769-14777. PubMed ID: 28608592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supraphos: a supramolecular strategy to prepare bidentate ligands.
    Slagt VF; Röder M; Kamer PC; Van Leeuwen PW; Reek JN
    J Am Chem Soc; 2004 Apr; 126(13):4056-7. PubMed ID: 15053565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of supramolecular bidentate hybrid ligands in asymmetric hydroformylation.
    Bellini R; Reek JN
    Chemistry; 2012 Oct; 18(42):13510-9. PubMed ID: 22968918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encapsulation of transition metal catalysts by ligand-template directed assembly.
    Slagt VF; Kamer PC; van Leeuwen PW; Reek JN
    J Am Chem Soc; 2004 Feb; 126(5):1526-36. PubMed ID: 14759211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template-induced formation of heterobidentate ligands and their application in the asymmetric hydroformylation of styrene.
    Kuil M; Goudriaan PE; van Leeuwen PW; Reek JN
    Chem Commun (Camb); 2006 Dec; (45):4679-81. PubMed ID: 17109034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular bidentate ligands by metal-directed in situ formation of antiparallel beta-sheet structures and application in asymmetric catalysis.
    Laungani AC; Slattery JM; Krossing I; Breit B
    Chemistry; 2008; 14(15):4488-502. PubMed ID: 18449870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. INDOLPhos: novel hybrid phosphine-phosphoramidite ligands for asymmetric hydrogenation and hydroformylation.
    Wassenaar J; Reek JN
    Dalton Trans; 2007 Sep; (34):3750-3. PubMed ID: 17712439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordination studies on supramolecular chiral ligands and application in asymmetric hydroformylation.
    Bellini R; Reek JN
    Chemistry; 2012 Jun; 18(23):7091-9. PubMed ID: 22532382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of porphyrin hexamers via bidentate metal-ligand coordination.
    Lensen MC; Nolte RJM; Rowan AE; Pyckhout-Hintzen W; Feiters MC; Elemans JAAW
    Dalton Trans; 2018 Oct; 47(40):14277-14287. PubMed ID: 29881835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise supramolecular control of selectivity in the Rh-catalyzed hydroformylation of terminal and internal alkenes.
    Dydio P; Detz RJ; Reek JN
    J Am Chem Soc; 2013 Jul; 135(29):10817-28. PubMed ID: 23802682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effector responsive hydroformylation catalysis.
    Bai ST; Sinha V; Kluwer AM; Linnebank PR; Abiri Z; Dydio P; Lutz M; de Bruin B; Reek JNH
    Chem Sci; 2019 Aug; 10(31):7389-7398. PubMed ID: 31489161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Template-controlled assembly of ditopic catechol phosphines: a strategy for the generation of complexes of bidentate phosphines with different bite angles.
    Chikkali SH; Gudat D; Lissner F; Niemeyer M; Schleid T; Nieger M
    Chemistry; 2009; 15(2):482-91. PubMed ID: 19035585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cobalt(II), copper(II), zinc(II) and cadmium(II) complexes based on dibenzimidazolyl bidentate ligands with alkanyl linkers: crystal structure, weak interactions and conformations.
    Liu QX; Wei Q; Zhao XJ; Wang H; Li SJ; Wang XG
    Dalton Trans; 2013 Apr; 42(16):5902-15. PubMed ID: 23459845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meso-porphyrinylphosphine oxides: mono- and bidentate ligands for supramolecular chemistry and the crystal structures of monomeric {[10,20-diphenylporphyrinatonickel(II)-5,15-diyl]-bis-[P(O)Ph(2)] and polymeric self-coordinated {[10,20-diphenylporphyrinatozinc(II)-5,15-diyl]-bis-[P(O)Ph(2)]}.
    Atefi F; McMurtrie JC; Turner P; Duriska M; Arnold DP
    Inorg Chem; 2006 Aug; 45(16):6479-89. PubMed ID: 16878962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photophysics of self-assembled zinc porphyrin-bidentate diamine ligand complexes.
    Danger BR; Bedient K; Maiti M; Burgess IJ; Steer RP
    J Phys Chem A; 2010 Oct; 114(41):10960-8. PubMed ID: 20866069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen bonding as a construction element for bidentate donor ligands in homogeneous catalysis: regioselective hydroformylation of terminal alkenes.
    Breit B; Seiche W
    J Am Chem Soc; 2003 Jun; 125(22):6608-9. PubMed ID: 12769551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.