These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 14588001)

  • 1. Microfluidic devices for the high-throughput chemical analysis of cells.
    McClain MA; Culbertson CT; Jacobson SC; Allbritton NL; Sims CE; Ramsey JM
    Anal Chem; 2003 Nov; 75(21):5646-55. PubMed ID: 14588001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices.
    Wabuyele MB; Ford SM; Stryjewski W; Barrow J; Soper SA
    Electrophoresis; 2001 Oct; 22(18):3939-48. PubMed ID: 11700724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combinatorial mixing of microfluidic streams.
    Neils C; Tyree Z; Finlayson B; Folch A
    Lab Chip; 2004 Aug; 4(4):342-50. PubMed ID: 15269802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage.
    Wang HY; Bhunia AK; Lu C
    Biosens Bioelectron; 2006 Dec; 22(5):582-8. PubMed ID: 16530400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip.
    Gao J; Yin XF; Fang ZL
    Lab Chip; 2004 Feb; 4(1):47-52. PubMed ID: 15007440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully integrated microfluidic separations systems for biochemical analysis.
    Roman GT; Kennedy RT
    J Chromatogr A; 2007 Oct; 1168(1-2):170-88; discussion 169. PubMed ID: 17659293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology.
    Hellmich W; Pelargus C; Leffhalm K; Ros A; Anselmetti D
    Electrophoresis; 2005 Oct; 26(19):3689-96. PubMed ID: 16152668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophoretic analysis of N-glycans on microfluidic devices.
    Zhuang Z; Starkey JA; Mechref Y; Novotny MV; Jacobson SC
    Anal Chem; 2007 Sep; 79(18):7170-5. PubMed ID: 17685584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA analysis on electrophoretic microchips: effect of operational variables.
    Ronai Z; Barta C; Sasvari-Szekely M; Guttman A
    Electrophoresis; 2001 Jan; 22(2):294-9. PubMed ID: 11288897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous dielectrophoretic cell separation microfluidic device.
    Li Y; Dalton C; Crabtree HJ; Nilsson G; Kaler KV
    Lab Chip; 2007 Feb; 7(2):239-48. PubMed ID: 17268627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indirect fluorescence detection of simple sugars via high-pH electrophoresis in poly(dimethylsiloxane) microfluidic chips.
    Monahan J; Gewirth AA; Nuzzo RG
    Electrophoresis; 2002 Jul; 23(14):2347-54. PubMed ID: 12210242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfabricated device for subcellular organelle sorting.
    Lu H; Gaudet S; Schmidt MA; Jensen KF
    Anal Chem; 2004 Oct; 76(19):5705-12. PubMed ID: 15456289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel microfluidic concept for bioanalysis using freely moving beads trapped in recirculating flows.
    Lettieri GL; Dodge A; Boer G; de Rooij NF; Verpoorte E
    Lab Chip; 2003 Feb; 3(1):34-9. PubMed ID: 15100803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous cell introduction and rapid dynamic lysis for high-throughput single-cell analysis on microfludic chips with hydrodynamic focusing.
    Xu CX; Yin XF
    J Chromatogr A; 2011 Feb; 1218(5):726-32. PubMed ID: 21185567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell immersion and cell dipping in microfluidic devices.
    Seger U; Gawad S; Johann R; Bertsch A; Renaud P
    Lab Chip; 2004 Apr; 4(2):148-51. PubMed ID: 15052356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of an interface to allow microfluidic electrophoresis chips to drink from the fire hose of the external environment.
    Attiya S; Jemere AB; Tang T; Fitzpatrick G; Seiler K; Chiem N; Harrison DJ
    Electrophoresis; 2001 Jan; 22(2):318-27. PubMed ID: 11288900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic delivery of small molecules into mammalian cells based on hydrodynamic focusing.
    Wang F; Wang H; Wang J; Wang HY; Rummel PL; Garimella SV; Lu C
    Biotechnol Bioeng; 2008 May; 100(1):150-8. PubMed ID: 18078299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of microfluidic devices using dry film photoresist for microchip capillary electrophoresis.
    Tsai YC; Jen HP; Lin KW; Hsieh YZ
    J Chromatogr A; 2006 Apr; 1111(2):267-71. PubMed ID: 16384565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic-based cell sorting of Francisella tularensis infected macrophages using optical forces.
    Perroud TD; Kaiser JN; Sy JC; Lane TW; Branda CS; Singh AK; Patel KD
    Anal Chem; 2008 Aug; 80(16):6365-72. PubMed ID: 18510341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.