These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 14588001)

  • 21. Why the move to microfluidics for protein analysis?
    Lion N; Reymond F; Girault HH; Rossier JS
    Curr Opin Biotechnol; 2004 Feb; 15(1):31-7. PubMed ID: 15102463
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrokinetic-driven microfluidic system in poly(dimethylsiloxane) for mass spectrometry detection integrating sample injection, capillary electrophoresis, and electrospray emitter on-chip.
    Thorslund S; Lindberg P; Andrén PE; Nikolajeff F; Bergquist J
    Electrophoresis; 2005 Dec; 26(24):4674-83. PubMed ID: 16273585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-throughput microfluidic device for single cell analysis using multiple integrated soft lithographic pumps.
    Patabadige DE; Mickleburgh T; Ferris L; Brummer G; Culbertson AH; Culbertson CT
    Electrophoresis; 2016 May; 37(10):1337-44. PubMed ID: 26887846
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic sonicator for real-time disruption of eukaryotic cells and bacterial spores for DNA analysis.
    Marentis TC; Kusler B; Yaralioglu GG; Liu S; Haeggström EO; Khuri-Yakub BT
    Ultrasound Med Biol; 2005 Sep; 31(9):1265-77. PubMed ID: 16176793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfabricated system for parallel single-cell capillary electrophoresis.
    Munce NR; Li J; Herman PR; Lilge L
    Anal Chem; 2004 Sep; 76(17):4983-9. PubMed ID: 15373432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic chemical cytometry based on modulation of local field strength.
    Wang HY; Lu C
    Chem Commun (Camb); 2006 Sep; (33):3528-30. PubMed ID: 16921434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Separation of apoptotic cells using a microfluidic device.
    Kim HS; Son OT; Kim KH; Kim SH; Maeng S; Jung HI
    Biotechnol Lett; 2007 Nov; 29(11):1659-63. PubMed ID: 17628753
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-throughput determination of glutathione and reactive oxygen species in single cells based on fluorescence images in a microchannel.
    Gao N; Li L; Shi Z; Zhang X; Jin W
    Electrophoresis; 2007 Nov; 28(21):3966-75. PubMed ID: 17922501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Out-of-plane integration of a multimode optical fiber for single particle/cell detection at multiple points on a microfluidic device with applications to particle/cell counting, velocimetry, size discrimination and the analysis of single cell lysate injections.
    Sadeghi J; Patabadige DE; Culbertson AH; Latifi H; Culbertson CT
    Lab Chip; 2016 Dec; 17(1):145-155. PubMed ID: 27909706
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-cell analysis of yeast, mammalian cells, and fungal spores with a microfluidic pressure-driven chip-based system.
    Palková Z; Váchová L; Valer M; Preckel T
    Cytometry A; 2004 Jun; 59(2):246-53. PubMed ID: 15170604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity.
    Baret JC; Miller OJ; Taly V; Ryckelynck M; El-Harrak A; Frenz L; Rick C; Samuels ML; Hutchison JB; Agresti JJ; Link DR; Weitz DA; Griffiths AD
    Lab Chip; 2009 Jul; 9(13):1850-8. PubMed ID: 19532959
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel multi-depth microfluidic chip for single cell analysis.
    Yue S; Xue-Feng Y
    J Chromatogr A; 2006 Jun; 1117(2):228-33. PubMed ID: 16620849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A microfluidic dual capillary probe to collect messenger RNA from adherent cells and spheroids.
    Shiku H; Yamakawa T; Nashimoto Y; Takahashi Y; Torisawa YS; Yasukawa T; Ito-Sasaki T; Yokoo M; Abe H; Kambara H; Matsue T
    Anal Biochem; 2009 Feb; 385(1):138-42. PubMed ID: 19026981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays.
    Hung PJ; Lee PJ; Sabounchi P; Lin R; Lee LP
    Biotechnol Bioeng; 2005 Jan; 89(1):1-8. PubMed ID: 15580587
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental study and numerical estimation of current changes in electroosmotically pumped microfluidic devices.
    Rodríguez I; Chandrasekhar N
    Electrophoresis; 2005 Mar; 26(6):1114-21. PubMed ID: 15706573
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simple, fast and high-throughput single-cell analysis on PDMS microfluidic chips.
    Yu L; Huang H; Dong X; Wu D; Qin J; Lin B
    Electrophoresis; 2008 Dec; 29(24):5055-60. PubMed ID: 19130590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiplexed enzyme assays in capillary electrophoretic single-use microfluidic devices.
    Xue Q; Wainright A; Gangakhedkar S; Gibbons I
    Electrophoresis; 2001 Oct; 22(18):4000-7. PubMed ID: 11700732
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A microfluidic electroporation device for cell lysis.
    Lu H; Schmidt MA; Jensen KF
    Lab Chip; 2005 Jan; 5(1):23-9. PubMed ID: 15616736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-cell electroporation arrays with real-time monitoring and feedback control.
    Khine M; Ionescu-Zanetti C; Blatz A; Wang LP; Lee LP
    Lab Chip; 2007 Apr; 7(4):457-62. PubMed ID: 17389961
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The potential of autofluorescence for the detection of single living cells for label-free cell sorting in microfluidic systems.
    Emmelkamp J; Wolbers F; Andersson H; Dacosta RS; Wilson BC; Vermes I; van den Berg A
    Electrophoresis; 2004 Nov; 25(21-22):3740-5. PubMed ID: 15565697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.