These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 14588014)
1. Electrokinetic transport through rough microchannels. Hu Y; Werner C; Li D Anal Chem; 2003 Nov; 75(21):5747-58. PubMed ID: 14588014 [TBL] [Abstract][Full Text] [Related]
2. Influence of the three-dimensional heterogeneous roughness on electrokinetic transport in microchannels. Hu Y; Werner C; Li D J Colloid Interface Sci; 2004 Dec; 280(2):527-36. PubMed ID: 15533426 [TBL] [Abstract][Full Text] [Related]
3. Electrokinetic transport in microchannels with random roughness. Wang M; Kang Q Anal Chem; 2009 Apr; 81(8):2953-61. PubMed ID: 19301844 [TBL] [Abstract][Full Text] [Related]
4. Modeling of nucleic acid adsorption on 3D prisms in microchannels. Hu Y; Li D Anal Chim Acta; 2007 Jan; 581(1):42-52. PubMed ID: 17386424 [TBL] [Abstract][Full Text] [Related]
5. Tradeoff between mixing and transport for electroosmotic flow in heterogeneous microchannels with nonuniform surface potentials. Tian F; Li B; Kwok DY Langmuir; 2005 Feb; 21(3):1126-31. PubMed ID: 15667199 [TBL] [Abstract][Full Text] [Related]
6. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels. Tang G; Yan D; Yang C; Gong H; Chai JC; Lam YC Electrophoresis; 2006 Feb; 27(3):628-39. PubMed ID: 16456892 [TBL] [Abstract][Full Text] [Related]
7. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects. Jellema LC; Mey T; Koster S; Verpoorte E Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967 [TBL] [Abstract][Full Text] [Related]
8. On the surface conductance, flow rate, and current continuities of microfluidics with nonuniform surface potentials. Tian F; Kwok DY Langmuir; 2005 Mar; 21(6):2192-8. PubMed ID: 15752006 [TBL] [Abstract][Full Text] [Related]
9. A method to determine zeta potential and Navier slip coefficient of microchannels. Park HM J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996 [TBL] [Abstract][Full Text] [Related]
10. Role of rough surface topography on gas slip flow in microchannels. Zhang C; Chen Y; Deng Z; Shi M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016319. PubMed ID: 23005537 [TBL] [Abstract][Full Text] [Related]
11. Electrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson-Boltzmann method. Wang M; Wang J; Chen S; Pan N J Colloid Interface Sci; 2006 Dec; 304(1):246-53. PubMed ID: 16989843 [TBL] [Abstract][Full Text] [Related]
12. Focused electrophoretic motion and selected electrokinetic dispensing of particles and cells in cross-microchannels. Xuan X; Li D Electrophoresis; 2005 Sep; 26(18):3552-60. PubMed ID: 16110466 [TBL] [Abstract][Full Text] [Related]
13. Concentration polarization and nonequilibrium electroosmotic slip in dense multiparticle systems. Nischang I; Reichl U; Seidel-Morgenstern A; Tallarek U Langmuir; 2007 Aug; 23(18):9271-81. PubMed ID: 17683148 [TBL] [Abstract][Full Text] [Related]
14. Finite reservoir effect on capillary flow of microbead suspension in rectangular microchannels. Waghmare PR; Mitra SK J Colloid Interface Sci; 2010 Nov; 351(2):561-9. PubMed ID: 20813377 [TBL] [Abstract][Full Text] [Related]
15. Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge. Xuan X; Li D J Colloid Interface Sci; 2005 Sep; 289(1):291-303. PubMed ID: 16009236 [TBL] [Abstract][Full Text] [Related]
16. Electrokinetic transport in nanochannels. 1. Theory. Pennathur S; Santiago JG Anal Chem; 2005 Nov; 77(21):6772-81. PubMed ID: 16255573 [TBL] [Abstract][Full Text] [Related]
17. Electroosmotic flow and particle transport in micro/nano nozzles and diffusers. Chen L; Conlisk AT Biomed Microdevices; 2008 Apr; 10(2):289-98. PubMed ID: 18034305 [TBL] [Abstract][Full Text] [Related]