These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. The interplay of diffusional and electrophoretic transport mechanisms of charged solutes in the liquid film surrounding charged nonporous adsorbent particles employed in finite bath adsorption systems. Grimes BA; Liapis AI J Colloid Interface Sci; 2002 Apr; 248(2):504-20. PubMed ID: 16290557 [TBL] [Abstract][Full Text] [Related]
27. Numerical modeling of the Joule heating effect on electrokinetic flow focusing. Huang KD; Yang RJ Electrophoresis; 2006 May; 27(10):1957-66. PubMed ID: 16619299 [TBL] [Abstract][Full Text] [Related]
28. Effect of nanometric-scale roughness on slip at the wall of simple fluids. Schmatko T; Hervet H; Léger L Langmuir; 2006 Aug; 22(16):6843-50. PubMed ID: 16863229 [TBL] [Abstract][Full Text] [Related]
29. Computer simulation and theory of the diffusion- and flow-induced concentration dispersion in microfluidic devices and HPLC systems based on rectangular microchannels. Morf WE; van der Wal PD; de Rooij NF Anal Chim Acta; 2008 Aug; 622(1-2):175-81. PubMed ID: 18602550 [TBL] [Abstract][Full Text] [Related]
30. Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels. Chakraborty S Anal Chim Acta; 2007 Dec; 605(2):175-84. PubMed ID: 18036381 [TBL] [Abstract][Full Text] [Related]
31. Concentration polarization and nonequilibrium electroosmotic slip in hierarchical monolithic structures. Nischang I; Höltzel A; Seidel-Morgenstern A; Tallarek U Electrophoresis; 2008 Mar; 29(5):1140-51. PubMed ID: 18219652 [TBL] [Abstract][Full Text] [Related]
32. Effect of liquid slip in electrokinetic parallel-plate microchannel flow. Yang J; Kwok DY J Colloid Interface Sci; 2003 Apr; 260(1):225-33. PubMed ID: 12742054 [TBL] [Abstract][Full Text] [Related]
33. Electric-field-enhanced transport in polyacrylamide hydrogel nanocomposites. Hill RJ J Colloid Interface Sci; 2007 Dec; 316(2):635-44. PubMed ID: 17915246 [TBL] [Abstract][Full Text] [Related]
34. Effect of electroosmotic flow on the electrophoresis of a membrane-coated sphere along the axis of a cylindrical pore. Hsu JP; Chen ZS; Tseng S J Phys Chem B; 2009 May; 113(21):7701-8. PubMed ID: 19456176 [TBL] [Abstract][Full Text] [Related]
35. Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control. Oh YJ; Garcia AL; Petsev DN; Lopez GP; Brueck SR; Ivory CF; Han SM Lab Chip; 2009 Jun; 9(11):1601-8. PubMed ID: 19458869 [TBL] [Abstract][Full Text] [Related]
36. Pore-scale dispersion in electrokinetic flow through a random sphere packing. Hlushkou D; Khirevich S; Apanasovich V; Seidel-Morgenstern A; Tallarek U Anal Chem; 2007 Jan; 79(1):113-21. PubMed ID: 17194128 [TBL] [Abstract][Full Text] [Related]
37. Surface-directed, graft polymerization within microfluidic channels. Hu S; Ren X; Bachman M; Sims CE; Li GP; Allbritton NL Anal Chem; 2004 Apr; 76(7):1865-70. PubMed ID: 15053645 [TBL] [Abstract][Full Text] [Related]
38. Electrokinetic control of fluid transport in gold-coated nanocapillary array membranes in hybrid nanofluidic-microfluidic devices. Piruska A; Branagan SP; Minnis AB; Wang Z; Cropek DM; Sweedler JV; Bohn PW Lab Chip; 2010 May; 10(10):1237-44. PubMed ID: 20445875 [TBL] [Abstract][Full Text] [Related]
39. Nonequilibrium electrokinetic effects in beds of ion-permselective particles. Leinweber FC; Tallarek U Langmuir; 2004 Dec; 20(26):11637-48. PubMed ID: 15595793 [TBL] [Abstract][Full Text] [Related]
40. Model based design of a microfluidic mixer driven by induced charge electroosmosis. Harnett CK; Templeton J; Dunphy-Guzman KA; Senousy YM; Kanouff MP Lab Chip; 2008 Apr; 8(4):565-72. PubMed ID: 18369511 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]