BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 14588030)

  • 41. Retention mechanisms in super/subcritical fluid chromatography on packed columns.
    Lesellier E
    J Chromatogr A; 2009 Mar; 1216(10):1881-90. PubMed ID: 18996534
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Overlapping elution-extrusion counter-current chromatography: a novel method for efficient purification of natural cytotoxic andrographolides from Andrographis paniculata.
    Wu D; Cao X; Wu S
    J Chromatogr A; 2012 Feb; 1223():53-63. PubMed ID: 22227359
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Theory of stepwise gradient elution in reversed-phase liquid chromatography coupled with flow rate variations: application to retention prediction and separation optimization of a set of amino acids.
    Nikitas P; Pappa-Louisi A; Balkatzopoulou P
    Anal Chem; 2006 Aug; 78(16):5774-82. PubMed ID: 16906723
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tubing modifications for countercurrent chromatography (CCC): Stationary phase retention and separation efficiency.
    Englert M; Vetter W
    Anal Chim Acta; 2015 Jul; 884():114-23. PubMed ID: 26073817
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Column equilibration effects in gradient elution in reversed-phase liquid chromatography.
    Pappa-Louisi A; Nikitas P; Agrafiotou P
    J Chromatogr A; 2006 Sep; 1127(1-2):97-107. PubMed ID: 16797559
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Three-phase solvent systems for comprehensive separation of a wide variety of compounds by high-speed counter-current chromatography.
    Shibusawa Y; Yamakawa Y; Noji R; Yanagida A; Shindo H; Ito Y
    J Chromatogr A; 2006 Nov; 1133(1-2):119-25. PubMed ID: 16920128
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comprehensive two-dimensional normal-phase (adsorption)-reversed-phase liquid chromatography.
    Dugo P; Favoino O; Luppino R; Dugo G; Mondello L
    Anal Chem; 2004 May; 76(9):2525-30. PubMed ID: 15117193
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prediction of elution bandwidth for purine compounds by a retention model in reversed-phase HPLC with linear-gradient elution.
    Jin CH; Lee JW; Row KH
    J Sep Sci; 2008 Jan; 31(1):23-9. PubMed ID: 18064619
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multiple dual-mode centrifugal partition chromatography, a semi-continuous development mode for routine laboratory-scale purifications.
    Delannay E; Toribio A; Boudesocque L; Nuzillard JM; Zèches-Hanrot M; Dardennes E; Le Dour G; Sapi J; Renault JH
    J Chromatogr A; 2006 Sep; 1127(1-2):45-51. PubMed ID: 16806250
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Method to predict the bandwidth of elution profile under the linear gradient elution in reversed-phase HPLC.
    Lee JW; Row KH
    J Sep Sci; 2009 Jan; 32(2):221-30. PubMed ID: 19156644
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Numerical model for the investigation of dual-flow in a spiral counter-current chromatography column.
    König CS; Sutherland IA
    J Chromatogr A; 2007 Jun; 1151(1-2):131-5. PubMed ID: 17353020
    [TBL] [Abstract][Full Text] [Related]  

  • 52. General method allowing the use of 100% aqueous loading conditions in reversed-phase liquid chromatography.
    Pettersson SW; Persson BS; Nyström M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Apr; 803(1):159-65. PubMed ID: 15026009
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simultaneous separation of anionic, cationic, and neutral components in capillary liquid chromatography using mixed-bed column of hydrophilic and anion-exchange stationary phases.
    Igawa N; Kitagawa S; Ohtani H
    J Sep Sci; 2009 Feb; 32(3):359-63. PubMed ID: 19137531
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Elution-extrusion countercurrent chromatography: theory and concepts in metabolic analysis.
    Berthod A; Friesen JB; Inui T; Pauli GF
    Anal Chem; 2007 May; 79(9):3371-82. PubMed ID: 17408244
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel stationary phase based on amino derivatized nanotubes for HPLC separations: theoretical and practical aspects.
    André C; Gharbi T; Guillaume YC
    J Sep Sci; 2009 May; 32(10):1757-64. PubMed ID: 19472277
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of a polar-embedded stationary phase for the separation of tocopherols by CEC.
    Carabias-Martínez R; Rodríguez-Gonzalo E; Smith NW; Ruano-Miguel L
    Electrophoresis; 2006 Nov; 27(22):4423-30. PubMed ID: 17058307
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model IV. Aromatic stationary phases.
    West C; Lesellier E
    J Chromatogr A; 2006 May; 1115(1-2):233-45. PubMed ID: 16529759
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of capillary-channeled polymer fiber stationary phases for high-performance liquid chromatography protein separations: Comparative analysis with a packed-bed column.
    Nelson DM; Marcus RK
    Anal Chem; 2006 Dec; 78(24):8462-71. PubMed ID: 17165840
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Description of retention characteristics of calixarene-bonded stationary phases in dependence of the methanol content in the mobile phase.
    Schneider C; Jira T
    J Chromatogr A; 2009 Aug; 1216(35):6285-94. PubMed ID: 19632685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.