BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 1459073)

  • 1. Information on DNA conformation derived from transverse pore gradient gel electrophoresis in conjunction with an advanced data analysis applied to capillary electrophoresis in polymer media.
    Wheeler D; Tietz D; Chrambach A
    Electrophoresis; 1992; 13(9-10):604-8. PubMed ID: 1459073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capabilities and potentialities of transverse pore gradient gel electrophoresis.
    Chrambach A; Wheeler DL
    Electrophoresis; 1994; 15(8-9):1021-7. PubMed ID: 7859702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-dimensional plot for the display of transverse pore gradient gel electrophoresis data: application to a kinetoplast DNA fragment of planar circular conformation.
    Wheeler D; Chrambach A
    Electrophoresis; 1993 Jul; 14(7):570-2. PubMed ID: 8375346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the electrophoretic properties of nucleosome core particles by transverse polyacrylamide pore gradient gel electrophoresis.
    Orbán L; Garner MM; Wheeler D; Tietz D; Chrambach A
    Electrophoresis; 1993 Aug; 14(8):720-4. PubMed ID: 8404815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinction between supercoiled and linear DNA in transverse agarose pore gradient gel electrophoresis.
    Wheeler D; Lin JH; Chrambach A
    Electrophoresis; 1992 Jul; 13(7):403-6. PubMed ID: 1330534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Procedures and computer program for deriving the Ferguson plot from electrophoresis in a single pore gradient gel: application to agarose gel and a polystyrene particle.
    Tietz D; Gombocz E; Chrambach A
    Electrophoresis; 1991 Oct; 12(10):710-21. PubMed ID: 1802689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A gel-concentration-independent retardation detected in two fragments of the rrnB P1 promoter of E. coli using transverse polyacrylamide pore gradient gel electrophoresis.
    Wheeler D
    Biochem Biophys Res Commun; 1993 May; 193(1):413-9. PubMed ID: 8389150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of DNA curvature by transverse pore gradient gel electrophoresis on PhastSystem gels.
    Buzás Z; Boldogkoi Z
    Electrophoresis; 1999 Oct; 20(14):2838-40. PubMed ID: 10546816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-aided analysis of DNA curves on transverse gradient gels.
    Wheeler D; Orban L; Garner MM; Chrambach A
    J Biochem Biophys Methods; 1992 Jun; 24(3-4):171-80. PubMed ID: 1379270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of conformational and net charge differences in DNA-protein complexes by quantitative electrophoresis on polyacrylamide-agarose copolymer gels.
    Orbán L; Chrambach A; Zwieb C; Adhya SL
    Electrophoresis; 1991 Jun; 12(6):391-6. PubMed ID: 1889387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of polyacrylamide gel pore size from Ferguson plots of linear DNA fragments. II. Comparison of gels with different crosslinker concentrations, added agarose and added linear polyacrylamide.
    Holmes DL; Stellwagen NC
    Electrophoresis; 1991 Sep; 12(9):612-9. PubMed ID: 1752240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transverse agarose pore gradient gel electrophoresis of DNA.
    Fawcett JS; Wheeler D; Chrambach A
    J Biochem Biophys Methods; 1992 Jun; 24(3-4):181-94. PubMed ID: 1640052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalously slow electrophoretic mobilities of DNA restriction fragments in polyacrylamide gels are not eliminated by increasing the gel pore size.
    Stellwagen A; Stellwagen NC
    Biopolymers; 1990; 30(3-4):309-24. PubMed ID: 2177663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of a single base mismatch in double-stranded DNA by electrophoresis on uncrosslinked polyacrylamide gel.
    Pulyaeva H; Zakharov SF; Garner MM; Chrambach A
    Electrophoresis; 1994; 15(8-9):1095-100. PubMed ID: 7859713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the sequence determinants and flexibility of the kinetoplast DNA fragment with abnormal gel electrophoretic mobilities.
    Diekmann S; Wang JC
    J Mol Biol; 1985 Nov; 186(1):1-11. PubMed ID: 3001314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transverse pore gradient gel electrophoresis, using the PhastSystem.
    Buzás Z; Wheeler DL; Garner MM; Tietz D; Chrambach A
    Electrophoresis; 1994; 15(8-9):1028-31. PubMed ID: 7859703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electric field dependence of DNA mobilities in agarose gels: a reinvestigation.
    Holmes DL; Stellwagen NC
    Electrophoresis; 1990 Jan; 11(1):5-15. PubMed ID: 2318191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of polyacrylamide gel pore size from Ferguson plots of normal and anomalously migrating DNA fragments. I. Gels containing 3% N,N'-methylenebisacrylamide.
    Holmes DL; Stellwagen NC
    Electrophoresis; 1991 Apr; 12(4):253-63. PubMed ID: 2070781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Information on DNA conformation derived from the Ferguson plot of DNA fragments of up to 9 kb in size, using polyacrylamide gel electrophoresis in a discontinuous buffer system.
    Orbán L; Chrambach A
    Electrophoresis; 1991 Apr; 12(4):241-6. PubMed ID: 1712721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA shape and separation efficiency in polymer media: a computerized method based on electrophoretic mobility data.
    Tietz D; Chrambach A
    Electrophoresis; 1993 Mar; 14(3):185-90. PubMed ID: 8486129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.