These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 1459074)

  • 21. Determination of the molecular weight of DNA-bound protein(s) responsible for gel electrophoretic mobility shift of linear DNA fragments examplified with purified viral myb protein.
    Bading H
    Nucleic Acids Res; 1988 Jun; 16(12):5241-8. PubMed ID: 2968540
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Free mobility determination by electrophoresis in polyacrylamide containing agarose at a nonrestrictive concentration.
    Pospichal J; Vicchio D; Chrambach A
    Electrophoresis; 1991 Apr; 12(4):247-53. PubMed ID: 2070780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular sieving by polymer solutions: dependence on particle and polymer size, independence of polymer entanglement.
    Radko SP; Chrambach A
    Appl Theor Electrophor; 1995; 5(2):79-87. PubMed ID: 8573602
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Parallelism between width and asymmetry of peaks of rigid, spherical particles in capillary zone electrophoresis using polymer solutions.
    Radko SP; Chrambach A
    Electrophoresis; 1998 Jul; 19(10):1620-4. PubMed ID: 9719536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA mobility anomalies are determined primarily by polyacrylamide gel concentration, not gel pore size.
    Stellwagen NC
    Electrophoresis; 1997 Jan; 18(1):34-44. PubMed ID: 9059818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Information on DNA conformation derived from transverse pore gradient gel electrophoresis in conjunction with an advanced data analysis applied to capillary electrophoresis in polymer media.
    Wheeler D; Tietz D; Chrambach A
    Electrophoresis; 1992; 13(9-10):604-8. PubMed ID: 1459073
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dispersion coefficients of a protein and DNA fragment in polyacrylamide gel electrophoresis as a function of parameters defining the effective gel pore size and particle size.
    Chang HT; Chrambach A
    Electrophoresis; 1995 Jun; 16(6):895-8. PubMed ID: 7498132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Size exclusive capillary electrophoresis separation of DNA oligonucleotides in small size linear polyacrylamide polymer solution.
    Zhu J; Feng YL
    J Chromatogr A; 2005 Jul; 1081(1):19-23. PubMed ID: 16013592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The electric field dependence of DNA mobilities in agarose gels: a reinvestigation.
    Holmes DL; Stellwagen NC
    Electrophoresis; 1990 Jan; 11(1):5-15. PubMed ID: 2318191
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Capillary zone electrophoresis of DNA fragments in a novel polymer network: poly(N-acryloylaminoethoxyethanol).
    Chiari M; Nesi M; Righetti PG
    Electrophoresis; 1994 May; 15(5):616-22. PubMed ID: 7925238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards predicting mobility and resolution in polymeric media: some first steps.
    Chrambach A; Radko SP
    Electrophoresis; 1998 Jun; 19(8-9):1284-7. PubMed ID: 9694266
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of matrix chain length on the electrophoretic mobility of large linear and branched DNA in polymer solutions.
    Saha S; Heuer DM; Archer LA
    Electrophoresis; 2004 Feb; 25(3):396-404. PubMed ID: 14760630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultra-thin-layer agarose gel electrophoresis II. Separation of DNA fragments on composite agarose-linear polymer matrices.
    Guttman A; Lengyel T; Szoke M; Sasvari-Szekely M
    J Chromatogr A; 2000 Feb; 871(1-2):289-98. PubMed ID: 10735309
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shear-induced degradation of linear polyacrylamide solutions during pre-electrophoretic loading.
    Vazquez M; Schmalzing D; Matsudaira P; Ehrlich D; McKinley G
    Anal Chem; 2001 Jul; 73(13):3035-44. PubMed ID: 11467551
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Change of the higher order structure of DNA induced by the complexation with intercalating synthetic polymer, as is visualized by fluorescence microscopy.
    Minagawa K; Matsuzawa Y; Yoshikawa K; Masubuchi Y; Matsumoto M; Doi M; Nishimura C; Maeda M
    Nucleic Acids Res; 1993 Jan; 21(1):37-40. PubMed ID: 8441618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A systematic study of field inversion gel electrophoresis.
    Heller C; Pohl FM
    Nucleic Acids Res; 1989 Aug; 17(15):5989-6003. PubMed ID: 2528121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A theory for the electrophoretic separation of DNA in polymer solutions.
    Sunada WM; Blanch HW
    Electrophoresis; 1998 Dec; 19(18):3128-36. PubMed ID: 9932805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Atypical sieving of open circular DNA during pulsed field agarose gel electrophoresis.
    Serwer P; Hayes SJ
    Biochemistry; 1989 Jul; 28(14):5827-32. PubMed ID: 2528375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Apparent pore size of polyacrylamide gels: comparison of gels cast and run in Tris-acetate-EDTA and Tris-borate-EDTA buffers.
    Stellwagen NC
    Electrophoresis; 1998 Jul; 19(10):1542-7. PubMed ID: 9719523
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of ignored and well-known zone distortions on the separation performance of proteins in capillary free zone electrophoresis with special reference to analysis in polyacrylamide-coated fused silica capillaries in various buffers. I. Theoretical studies.
    Hjertén S; Mohabbati S; Westerlund D
    J Chromatogr A; 2004 Oct; 1053(1-2):181-99. PubMed ID: 15543984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.