These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 1459140)
21. Interaction of Lysinibacillus sphaericus binary toxin with mosquito larval gut cells: Binding and internalization. Lekakarn H; Promdonkoy B; Boonserm P J Invertebr Pathol; 2015 Nov; 132():125-131. PubMed ID: 26408968 [TBL] [Abstract][Full Text] [Related]
22. In vivo binding of the Cry11Bb toxin of Bacillus thuringiensis subsp. medellin to the midgut of mosquito larvae (Diptera: Culicidae). Ruiz LM; Segura C; Trujillo J; Orduz S Mem Inst Oswaldo Cruz; 2004 Feb; 99(1):73-9. PubMed ID: 15057351 [TBL] [Abstract][Full Text] [Related]
23. Interaction of Bacillus thuringiensis svar. israelensis Cry toxins with binding sites from Aedes aegypti (Diptera: Culicidae) larvae midgut. de Barros Moreira Beltrão H; Silva-Filha MH FEMS Microbiol Lett; 2007 Jan; 266(2):163-9. PubMed ID: 17132151 [TBL] [Abstract][Full Text] [Related]
24. Single nucleotide deletion of cqm1 gene results in the development of resistance to Bacillus sphaericus in Culex quinquefasciatus. Guo QY; Cai QX; Yan JP; Hu XM; Zheng DS; Yuan ZM J Insect Physiol; 2013 Sep; 59(9):967-73. PubMed ID: 23871751 [TBL] [Abstract][Full Text] [Related]
25. Culex quinquefasciatus alpha-glucosidase serves as a putative receptor of the Cry48Aa toxin from Lysinibacillus sphaericus. Guo Q; Gao Y; Xing C; Niu Y; Ding L; Dai X Insect Biochem Mol Biol; 2022 Aug; 147():103799. PubMed ID: 35662624 [TBL] [Abstract][Full Text] [Related]
26. Ultrastructural analysis of midgut cells from Culex quinquefasciatus (Diptera: Culicidae) larvae resistant to Bacillus sphaericus. de Melo JV; Vasconcelos RH; Furtado AF; Peixoto CA; Silva-Filha MH Micron; 2008 Dec; 39(8):1342-50. PubMed ID: 18346899 [TBL] [Abstract][Full Text] [Related]
27. Binding properties of Bacillus thuringiensis Cry4A toxin to the apical microvilli of larval midgut of Culex pipiens. Yamagiwa M; Kamauchi S; Okegawa T; Esaki M; Otake K; Amachi T; Komano T; Sakai H Biosci Biotechnol Biochem; 2001 Nov; 65(11):2419-27. PubMed ID: 11791714 [TBL] [Abstract][Full Text] [Related]
28. Identification and characterization of the receptor for the Bacillus sphaericus binary toxin in the malaria vector mosquito, Anopheles gambiae. Opota O; Charles JF; Warot S; Pauron D; Darboux I Comp Biochem Physiol B Biochem Mol Biol; 2008 Mar; 149(3):419-27. PubMed ID: 18086545 [TBL] [Abstract][Full Text] [Related]
29. A second independent resistance mechanism to Bacillus sphaericus binary toxin targets its alpha-glucosidase receptor in Culex quinquefasciatus. Romão TP; de Melo Chalegre KD; Key S; Ayres CF; Fontes de Oliveira CM; de-Melo-Neto OP; Silva-Filha MH FEBS J; 2006 Apr; 273(7):1556-68. PubMed ID: 16689941 [TBL] [Abstract][Full Text] [Related]
30. Binding of the Bacillus sphaericus mosquito larvicidal toxin to cultured insect cells. Davidson EW; Shellabarger C; Meyer M; Bieber AL Can J Microbiol; 1987 Nov; 33(11):982-9. PubMed ID: 3129170 [TBL] [Abstract][Full Text] [Related]
31. Putative chikungunya virus-specific receptor proteins on the midgut brush border membrane of Aedes aegypti mosquito. Mourya DT; Ranadive SN; Gokhale MD; Barde PV; Padbidri VS; Banerjee K Indian J Med Res; 1998 Jan; 107():10-4. PubMed ID: 9529775 [TBL] [Abstract][Full Text] [Related]
32. A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae. Fernandez LE; Aimanova KG; Gill SS; Bravo A; Soberón M Biochem J; 2006 Feb; 394(Pt 1):77-84. PubMed ID: 16255715 [TBL] [Abstract][Full Text] [Related]
33. Isolation and characterization of brush border membrane vesicles from whole Aedes aegypti larvae. Abdul-Rauf M; Ellar DJ J Invertebr Pathol; 1999 Jan; 73(1):45-51. PubMed ID: 9878289 [TBL] [Abstract][Full Text] [Related]
34. Binding properties of Bacillus thuringiensis Cry1C delta-endotoxin to the midgut epithelial membranes of Culex pipiens. Kamauchi S; Yamagiwa M; Esaki M; Otake K; Sakai H Biosci Biotechnol Biochem; 2003 Jan; 67(1):94-9. PubMed ID: 12619679 [TBL] [Abstract][Full Text] [Related]
35. Cytopathological effects of Bacillus sphaericus Cry48Aa/Cry49Aa toxin on binary toxin-susceptible and -resistant Culex quinquefasciatus larvae. de Melo JV; Jones GW; Berry C; Vasconcelos RH; de Oliveira CM; Furtado AF; Peixoto CA; Silva-Filha MH Appl Environ Microbiol; 2009 Jul; 75(14):4782-9. PubMed ID: 19502449 [TBL] [Abstract][Full Text] [Related]
36. Essential role of amino acids in αD-β4 loop of a Bacillus thuringiensis Cyt2Aa2 toxin in binding and complex formation on lipid membrane. Suktham K; Pathaichindachote W; Promdonkoy B; Krittanai C Toxicon; 2013 Nov; 74():130-7. PubMed ID: 23988392 [TBL] [Abstract][Full Text] [Related]
37. [The synergism between Mtx1 from Bacillus sphaericus and Cyt1 Aa from Bacillus thuringiensis to Culex quinquefasciatus]. Yang YK; Cai QX; Cai YJ; Yan JP; Yuan ZM Wei Sheng Wu Xue Bao; 2007 Jun; 47(3):456-60. PubMed ID: 17672305 [TBL] [Abstract][Full Text] [Related]
38. Role of the gut proteinases from mosquito larvae in the mechanism of action and the specificity of the Bacillus sphaericus toxin. Nicolas L; Lecroisey A; Charles JF Can J Microbiol; 1990 Nov; 36(11):804-7. PubMed ID: 1980629 [TBL] [Abstract][Full Text] [Related]
39. [The effect of water temperature on the action of bacterial insecticides against mosquito larvae]. Rasnitsyn SP; Voĭtsik AA; Iasiukevich VV Med Parazitol (Mosk); 1993; (1):8-10. PubMed ID: 8336659 [TBL] [Abstract][Full Text] [Related]