These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 1459196)

  • 1. Analysis of competence in cultured sea urchin micromeres.
    Page L; Benson S
    Exp Cell Res; 1992 Dec; 203(2):305-11. PubMed ID: 1459196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serum effects on the in vitro differentiation of sea urchin micromeres.
    McCarthy RA; Spiegel M
    Exp Cell Res; 1983 Dec; 149(2):433-41. PubMed ID: 6641810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo.
    McClay DR; Peterson RE; Range RC; Winter-Vann AM; Ferkowicz MJ
    Development; 2000 Dec; 127(23):5113-22. PubMed ID: 11060237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential distribution of spicule matrix proteins in the sea urchin embryo skeleton.
    Kitajima T; Urakami H
    Dev Growth Differ; 2000 Aug; 42(4):295-306. PubMed ID: 10969729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins.
    Poon J; Fries A; Wessel GM; Yajima M
    Nat Commun; 2019 Aug; 10(1):3779. PubMed ID: 31439829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The synthesis and secretion of collagen by cultured sea urchin micromeres.
    Benson S; Smith L; Wilt F; Shaw R
    Exp Cell Res; 1990 May; 188(1):141-6. PubMed ID: 2328772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of pmar1 controls specification of micromeres in the sea urchin embryo.
    Oliveri P; Davidson EH; McClay DR
    Dev Biol; 2003 Jun; 258(1):32-43. PubMed ID: 12781680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the cellular pathway involved in assembly of the embryonic sea urchin spicule.
    Hwang SP; Lennarz WJ
    Exp Cell Res; 1993 Apr; 205(2):383-7. PubMed ID: 8482343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis.
    Sweet HC; Hodor PG; Ettensohn CA
    Development; 1999 Dec; 126(23):5255-65. PubMed ID: 10556051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Culture of and experiments with sea urchin embryo primary mesenchyme cells.
    Moreno B; DiCorato A; Park A; Mobilia K; Knapp R; Bleher R; Wilke C; Alvares K; Joester D
    Methods Cell Biol; 2019; 150():293-330. PubMed ID: 30777181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Matrix metalloproteinase inhibitors disrupt spicule formation by primary mesenchyme cells in the sea urchin embryo.
    Ingersoll EP; Wilt FH
    Dev Biol; 1998 Apr; 196(1):95-106. PubMed ID: 9527883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo.
    Yamazaki A; Kawabata R; Shiomi K; Amemiya S; Sawaguchi M; Mitsunaga-Nakatsubo K; Yamaguchi M
    Dev Genes Evol; 2005 Sep; 215(9):450-59. PubMed ID: 16078091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo.
    Hodor PG; Ettensohn CA
    Dev Biol; 1998 Jul; 199(1):111-24. PubMed ID: 9676196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants.
    Minokawa T; Amemiya S
    Dev Growth Differ; 1999 Oct; 41(5):535-47. PubMed ID: 10545026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiation of Sea Urchin Micromeres: Correlation between Specific Protein Synthesis and Spicule Formation: (micromere/differentiation/protein synthesis/sea urchin).
    Kitajima T
    Dev Growth Differ; 1986 May; 28(3):233-242. PubMed ID: 37281194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of post-translational modifications common to three primary mesenchyme cell-specific glycoproteins involved in sea urchin embryonic skeleton formation.
    Kabakoff B; Hwang SP; Lennarz WJ
    Dev Biol; 1992 Apr; 150(2):294-305. PubMed ID: 1551476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spicule Formation-Inducing Substance in Sea Urchin Embryo: (sea urchin embryo/spicule/micromere/blastocoelic fluid).
    Kiyomoto M; Tsukahara J
    Dev Growth Differ; 1991 Oct; 33(5):443-450. PubMed ID: 37282224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of calcium elevation in the micromeres of sea urchin embryos.
    Yazaki I; Abe M; Santella L; Koyama Y
    Biol Cell; 2004 Mar; 96(2):153-67. PubMed ID: 15050370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collagen metabolism and spicule formation in sea urchin micromeres.
    Blankenship J; Benson S
    Exp Cell Res; 1984 May; 152(1):98-104. PubMed ID: 6714328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.