These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 1459196)

  • 41. Micromere formation and its evolutionary implications in the sea urchin.
    Emura N; Yajima M
    Curr Top Dev Biol; 2022; 146():211-238. PubMed ID: 35152984
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Change in the activity of Cl-,HCO3(-)-ATPase in microsome fraction during early development of the sea urchin, Hemicentrotus pulcherrimus.
    Mitsunaga K; Fujino Y; Yasumasu I
    J Biochem; 1986 Dec; 100(6):1607-15. PubMed ID: 2952640
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unequal divisions at the third cleavage increase the number of primary mesenchyme cells in sea urchin embryos.
    Kominami T; Takaichi M
    Dev Growth Differ; 1998 Oct; 40(5):545-53. PubMed ID: 9783480
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Delamination and tyrosine phosphorylation of SUp62 during early embryogenesis of sea urchin.
    Katow H
    Zygote; 2000; 8 Suppl 1():S39-40. PubMed ID: 11191302
    [No Abstract]   [Full Text] [Related]  

  • 45. Spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule.
    Peled-Kamar M; Hamilton P; Wilt FH
    Exp Cell Res; 2002 Jan; 272(1):56-61. PubMed ID: 11740865
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Developmental expression of a cell-surface protein involved in calcium uptake and skeleton formation in sea urchin embryos.
    Farach MC; Valdizan M; Park HR; Decker GL; Lennarz WJ
    Dev Biol; 1987 Aug; 122(2):320-31. PubMed ID: 3297856
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The origin of spicule-forming cells in a 'primitive' sea urchin (Eucidaris tribuloides) which appears to lack primary mesenchyme cells.
    Wray GA; McClay DR
    Development; 1988 Jun; 103(2):305-15. PubMed ID: 3066611
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells.
    Fink RD; McClay DR
    Dev Biol; 1985 Jan; 107(1):66-74. PubMed ID: 2578117
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The organic matrix of the skeletal spicule of sea urchin embryos.
    Benson SC; Benson NC; Wilt F
    J Cell Biol; 1986 May; 102(5):1878-86. PubMed ID: 3517009
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vasa protein expression is restricted to the small micromeres of the sea urchin, but is inducible in other lineages early in development.
    Voronina E; Lopez M; Juliano CE; Gustafson E; Song JL; Extavour C; George S; Oliveri P; McClay D; Wessel G
    Dev Biol; 2008 Feb; 314(2):276-86. PubMed ID: 18191830
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The origin of skeleton forming cells in the sea urchin embryo.
    Urben S; Nislow C; Spiegel M
    Rouxs Arch Dev Biol; 1988 Jan; 197(8):447-456. PubMed ID: 28305470
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Looking into the sea urchin embryo you can see local cell interactions regulate morphogenesis.
    Wilt FH
    Bioessays; 1997 Aug; 19(8):665-8. PubMed ID: 9264247
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An empirical model of Onecut binding activity at the sea urchin SM50 C-element gene regulatory region.
    Otim O
    Int J Dev Biol; 2017; 61(8-9):537-543. PubMed ID: 29139539
    [TBL] [Abstract][Full Text] [Related]  

  • 54. HpEts implicated in primary mesenchyme cell differentiation of the sea urchin (Hemicentrotus pulcherrimus) embryo.
    Kurokawa D; Kitajima T; Mitsunaga-Nakatsubo K; Amemiya S; Shimada H; Akasaka K
    Zygote; 2000; 8 Suppl 1():S33-4. PubMed ID: 11191299
    [No Abstract]   [Full Text] [Related]  

  • 55. Mesenchymal cell fusion in the sea urchin embryo.
    Hodor PG; Ettensohn CA
    Methods Mol Biol; 2008; 475():315-34. PubMed ID: 18979252
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Specification of endoderm and mesoderm in the sea urchin.
    McClay DR
    Zygote; 2000; 8 Suppl 1():S41. PubMed ID: 11191303
    [No Abstract]   [Full Text] [Related]  

  • 57. Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo.
    Ettensohn CA; Illies MR; Oliveri P; De Jong DL
    Development; 2003 Jul; 130(13):2917-28. PubMed ID: 12756175
    [TBL] [Abstract][Full Text] [Related]  

  • 58. KirrelL, a member of the Ig-domain superfamily of adhesion proteins, is essential for fusion of primary mesenchyme cells in the sea urchin embryo.
    Ettensohn CA; Dey D
    Dev Biol; 2017 Jan; 421(2):258-270. PubMed ID: 27866905
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. I. Authentication of the cloned gene and its developmental expression.
    Benson S; Sucov H; Stephens L; Davidson E; Wilt F
    Dev Biol; 1987 Apr; 120(2):499-506. PubMed ID: 3556766
    [TBL] [Abstract][Full Text] [Related]  

  • 60. PI3K inhibitors block skeletogenesis but not patterning in sea urchin embryos.
    Bradham CA; Miranda EL; McClay DR
    Dev Dyn; 2004 Apr; 229(4):713-21. PubMed ID: 15042695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.