These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 1459231)

  • 1. The effects of monocular enucleation on visual topography in area 17 in the rabbit.
    Clarke RJ; Datskovsky BW; Grigonis AM; Murphy EH
    Exp Brain Res; 1992; 91(2):303-10. PubMed ID: 1459231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcallosally evoked responses in the visual cortex of normal and monocularly enucleated rabbits.
    Clarke RJ; Datskovsky BW; Grigonis AM; Murphy EH
    Exp Brain Res; 1992; 91(2):296-302. PubMed ID: 1459230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responsiveness of cat area 17 after monocular inactivation: limitation of topographic plasticity in adult cortex.
    Rosa MG; Schmid LM; Calford MB
    J Physiol; 1995 Feb; 482 ( Pt 3)(Pt 3):589-608. PubMed ID: 7738850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of prenatal and neonatal monocular enucleation on visual topography in the uncrossed retinal pathway to the rat superior colliculus.
    Jeffery G; Thompson ID
    Exp Brain Res; 1986; 63(2):351-63. PubMed ID: 3758252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organization of callosal connections in the visual cortex of the rabbit following neonatal enucleation, dark rearing, and strobe rearing.
    Grigonis AM; Murphy EH
    J Comp Neurol; 1991 Oct; 312(4):561-72. PubMed ID: 1761742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of monocular blockade of retinal activity on the development of visual callosal connections in the rat.
    Chang K; Van Sluyters RC; Olavarria JF
    Biol Res; 1995; 28(3):219-26. PubMed ID: 9251752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of neonatal enucleation on the functional organization of the superior colliculus in the golden hamster.
    Rhoades RW
    J Physiol; 1980 Apr; 301():383-99. PubMed ID: 7411438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ocular dominance columns in V1 are more susceptible than associated callosal patches to imbalance of eye input during precritical and critical periods.
    Olavarria JF; Laing RJ; Andelin AK
    J Comp Neurol; 2021 Aug; 529(11):2883-2910. PubMed ID: 33683706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reorganization of the corticotectal projections introduced by neonatal monocular enucleation in the Monodelphis opossum and the influence of serotoninergic depletion.
    Djavadian RL; Bialoskorska K; Turlejski K
    Neuroscience; 2001; 102(4):911-23. PubMed ID: 11182253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mRNAs coding for neurotransmitter receptors and voltage-gated sodium channels in the adult rabbit visual cortex after monocular deafferentiation.
    Nguyen QT; Matute C; Miledi R
    Proc Natl Acad Sci U S A; 1998 Mar; 95(6):3257-62. PubMed ID: 9501250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of receptive-field organization of the superior colliculus in Siamese and normal cats.
    Berman N; Cynader M
    J Physiol; 1972 Jul; 224(2):363-89. PubMed ID: 5071401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The callosal pattern in striate cortex is more patchy in monocularly enucleated albino than pigmented rats.
    Abel PL; Olavarria JF
    Neurosci Lett; 1996 Feb; 204(3):169-72. PubMed ID: 8938257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative analysis of cytochrome oxidase-rich patches in the primary visual cortex of Cebus monkeys: topographic distribution and effects of late monocular enucleation.
    Rosa MG; Gattass R; Soares JG
    Exp Brain Res; 1991; 84(1):195-209. PubMed ID: 1649767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous ipsilateral retinotectal projections in Syrian hamsters with early lesions: topography and functional capacity.
    Finlay BL; Wilson KG; Schneider GE
    J Comp Neurol; 1979 Feb; 183(4):721-40. PubMed ID: 762269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neonatal monocular enucleation-induced cross-modal effects observed in the cortex of adult rat.
    Toldi J; Rojik I; Fehér O
    Neuroscience; 1994 Sep; 62(1):105-14. PubMed ID: 7816193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of visual callosal connections in neonatally enucleated rats.
    Olavarria J; Malach R; Van Sluyters RC
    J Comp Neurol; 1987 Jun; 260(3):321-48. PubMed ID: 3597836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laminar, columnar and topographic aspects of ocular dominance in the primary visual cortex of Cebus monkeys.
    Rosa MG; Gattass R; Fiorani M; Soares JG
    Exp Brain Res; 1992; 88(2):249-64. PubMed ID: 1577100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topography of striate-extrastriate connections in neonatally enucleated rats.
    Laing RJ; Lasiene J; Olavarria JF
    Biomed Res Int; 2013; 2013():592426. PubMed ID: 24199194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification in primary visual cortical activity of rat induced by neonatal monocular enucleation, an electrophysiological and autoradiographic study.
    Toldi J; Rojik I; Fehér O
    Acta Physiol Hung; 1993; 81(2):175-81. PubMed ID: 8197873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prenatal monocular enucleation induces a selective loss of low-spatial-frequency cortical responses to the remaining eye.
    Bisti S; Trimarchi C; Turlejski K
    Proc Natl Acad Sci U S A; 1995 Apr; 92(9):3908-12. PubMed ID: 7732005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.