These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 1459231)

  • 41. The size of the zone of origin of callosal afferents projecting to the primary visual cortex contralateral to the remaining eye in rats monocularly enucleated at different postnatal ages.
    Wree A; Angenendt HW; Zilles K
    Anat Embryol (Berl); 1986; 174(1):91-6. PubMed ID: 3706777
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolic changes in visual cortex of neonatal monocular enucleated rat: a proton magnetic resonance spectroscopy study.
    Chow AM; Zhou IY; Fan SJ; Chan KW; Chan KC; Wu EX
    Int J Dev Neurosci; 2011 Feb; 29(1):25-30. PubMed ID: 20950681
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The deafferented visual cortex and interhemispheric relationships: a physiological approach.
    Yinon U; Podell M
    Metab Pediatr Syst Ophthalmol (1985); 1988; 11(1-2):100-10. PubMed ID: 3076606
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plasticity of an aberrant geniculocortical pathway in neonatally lesioned cats.
    Kato N; Price DJ; Ferrer JM; Blakemore C
    Neuroreport; 1993 Jul; 4(7):915-8. PubMed ID: 8396462
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effects of neonatal monocular enucleation on the organization of ipsilateral and contralateral retinothalamic projections in the rabbit.
    Grigonis AM; Pearson HE; Murphy EH
    Brain Res; 1986 Sep; 394(1):9-19. PubMed ID: 3756534
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The topography of expanded uncrossed retinal projections following neonatal enucleation of one eye: differing effects in dorsal lateral geniculate nucleus and superior colliculus.
    Reese BE
    J Comp Neurol; 1986 Aug; 250(1):8-32. PubMed ID: 3016037
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modification of visual callosal projections in rats.
    Cusick CG; Lund RD
    J Comp Neurol; 1982 Dec; 212(4):385-98. PubMed ID: 7161416
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Monocular and binocular neuronal activity in human visual cortex revealed by electrical brain activity mapping.
    Skrandies W
    Exp Brain Res; 1993; 93(3):516-20. PubMed ID: 8519340
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Early blindness results in abnormal corticocortical and thalamocortical connections.
    Karlen SJ; Kahn DM; Krubitzer L
    Neuroscience; 2006 Oct; 142(3):843-58. PubMed ID: 16934941
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neonatal enucleation induces correlated modification in sensory responsive areas and pial angioarchitecture of the parietal and occipital cortex of albino rats.
    Wolff JR; Toldi J; Siklós L; Fehér O; Joó F
    J Comp Neurol; 1992 Mar; 317(2):187-94. PubMed ID: 1573063
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Structural and metabolic organisation of the brain area 4 in the norm and after unilateral ocular enucleation in cats].
    Zykin PA
    Morfologiia; 2003; 124(6):22-5. PubMed ID: 14994583
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anatomical correlates of functional plasticity in mouse visual cortex.
    Antonini A; Fagiolini M; Stryker MP
    J Neurosci; 1999 Jun; 19(11):4388-406. PubMed ID: 10341241
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Overall pattern of callosal connections in visual cortex of normal and enucleated cats.
    Olavarria JF; Van Sluyters RC
    J Comp Neurol; 1995 Dec; 363(2):161-76. PubMed ID: 8642068
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Horizontal saccade dynamics after childhood monocular enucleation.
    González EG; Lillakas L; Lam A; Gallie BL; Steinbach MJ
    Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):6463-71. PubMed ID: 23982846
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hemifield relative motion bias in adults monocularly enucleated at an early age.
    Bowns L; Kirshner L; Steinbach M
    Vision Res; 1994 Dec; 34(24):3389-95. PubMed ID: 7863621
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Asymmetrical activation of human visual cortex demonstrated by functional MRI with monocular stimulation.
    Toosy AT; Werring DJ; Plant GT; Bullmore ET; Miller DH; Thompson AJ
    Neuroimage; 2001 Sep; 14(3):632-41. PubMed ID: 11506536
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plasticity in adult cat visual cortex (area 17) following circumscribed monocular lesions of all retinal layers.
    Calford MB; Wang C; Taglianetti V; Waleszczyk WJ; Burke W; Dreher B
    J Physiol; 2000 Apr; 524 Pt 2(Pt 2):587-602. PubMed ID: 10767137
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of progressively longer durations of monocular deprivation on development of visuocortical receptive fields in the rabbit.
    Crabtree JW; Chow KL; Conlee J; Ostrach LH; Grobstein P
    Neurosci Lett; 1981 Oct; 26(1):61-5. PubMed ID: 7290539
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Measurements of somatostatin and neuropeptide Y in the visual cortex of monocularly deprived rats.
    McDonald JK; Parnavelas JG; Davies SW; Cavanagh ME
    Exp Neurol; 1993 Oct; 123(2):216-21. PubMed ID: 8104819
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of monocular enucleation on parvalbumin in rat visual system during postnatal development.
    Hada Y; Yamada Y; Imamura K; Mataga N; Watanabe Y; Yamamoto M
    Invest Ophthalmol Vis Sci; 1999 Oct; 40(11):2535-45. PubMed ID: 10509647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.