These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 1459231)

  • 61. Spatial analysis of ocular dominance patterns in monocularly deprived cats.
    Schmidt KE; Stephan M; Singer W; Löwel S
    Cereb Cortex; 2002 Aug; 12(8):783-96. PubMed ID: 12122027
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Receptive fields of single cells and topography in mouse visual cortex.
    Dräger UC
    J Comp Neurol; 1975 Apr; 160(3):269-90. PubMed ID: 1112925
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of neonatal and late unilateral enucleation on optokinetic responses and optic nerve projections in the rabbit.
    Collewijn H; Holstege G
    Exp Brain Res; 1984; 57(1):138-50. PubMed ID: 6519222
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Development of callosal topography in visual cortex of normal and enucleated rats.
    Olavarria JF; Safaeian P
    J Comp Neurol; 2006 Jun; 496(4):495-512. PubMed ID: 16572463
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Modified distribution patterns of responses in rat visual cortex induced by monocular enucleation.
    Toldi J; Joo F; Feher O; Wolff JR
    Neuroscience; 1988 Jan; 24(1):59-66. PubMed ID: 3368057
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Neuronal plasticity induced by neonatal monocular (and binocular) enucleation.
    Toldi J; Fehér O; Wolff JR
    Prog Neurobiol; 1996 Feb; 48(3):191-218. PubMed ID: 8735877
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Neonatal enucleation reduces the proportion of callosal boutons forming multiple synaptic contacts in rat striate cortex.
    Sorensen SA; Jones TA; Olavarria JF
    Neurosci Lett; 2003 Nov; 351(1):17-20. PubMed ID: 14550903
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Neuroreceptor bindings and synaptic activity in visual system of monocularly enucleated rat.
    Kiyosawa M; Ishiwata K; Noguchi J; Endo K; Wang WF; Suzuki F; Senda M
    Jpn J Ophthalmol; 2001; 45(3):264-9. PubMed ID: 11369376
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Monocular focal retinal lesions induce short-term topographic plasticity in adult cat visual cortex.
    Calford MB; Schmid LM; Rosa MG
    Proc Biol Sci; 1999 Mar; 266(1418):499-507. PubMed ID: 10189714
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Phenotypic characterisation of respecified visual cortex subsequent to prenatal enucleation in the monkey: development of acetylcholinesterase and cytochrome oxidase patterns.
    Dehay C; Giroud P; Berland M; Killackey HP; Kennedy H
    J Comp Neurol; 1996 Dec; 376(3):386-402. PubMed ID: 8956106
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modification induced in visual cortical activity of rat by neonatal monocular enucleation.
    Toldi J; Rojik I; Fehér O
    Neuroreport; 1992 Feb; 3(2):149-52. PubMed ID: 1623163
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Organization of primary visual cortex (area 17) in the ferret.
    Law MI; Zahs KR; Stryker MP
    J Comp Neurol; 1988 Dec; 278(2):157-80. PubMed ID: 3068264
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Modification of callosal afferents of the primary visual cortex ipsilateral to the remaining eye in rats monocularly enucleated at different stages of ontogeny.
    Wree A; Kulig G; Gutmann P; Zilles K
    Cell Tissue Res; 1985; 242(2):433-6. PubMed ID: 4053173
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions, and gyrification of striate and extrastriate cortex.
    Dehay C; Giroud P; Berland M; Killackey H; Kennedy H
    J Comp Neurol; 1996 Mar; 367(1):70-89. PubMed ID: 8867284
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Regional variation in the representation of the visual field in the visual cortex of the Siamese cat.
    Cooper ML; Blasdel GG
    J Comp Neurol; 1980 Sep; 193(1):237-53. PubMed ID: 7430429
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Transneuronal effects of early eye removal on geniculo-cortical projection cells.
    Jeffery G
    Brain Res; 1984 Apr; 315(2):257-63. PubMed ID: 6722589
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Global shape discrimination at reduced contrast in enucleated observers.
    Steeves JK; Wilkinson F; González EG; Wilson HR; Steinbach MJ
    Vision Res; 2004 Apr; 44(9):943-9. PubMed ID: 14992838
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Morphology of single geniculocortical afferents and functional recovery of the visual cortex after reverse monocular deprivation in the kitten.
    Antonini A; Gillespie DC; Crair MC; Stryker MP
    J Neurosci; 1998 Dec; 18(23):9896-909. PubMed ID: 9822746
    [TBL] [Abstract][Full Text] [Related]  

  • 79. In vivo evaluation of retinal and callosal projections in early postnatal development and plasticity using manganese-enhanced MRI and diffusion tensor imaging.
    Chan KC; Cheng JS; Fan S; Zhou IY; Yang J; Wu EX
    Neuroimage; 2012 Feb; 59(3):2274-83. PubMed ID: 21985904
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Retinal influences induce bidirectional changes in the kinetics of N-methyl-D-aspartate receptor-mediated responses in striate cortex cells during postnatal development.
    Olavarria JF; van Brederode JF; Spain WJ
    Neuroscience; 2007 Sep; 148(3):683-99. PubMed ID: 17706364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.