These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 14592722)

  • 81. Cloning and expression of R-factor mediated arsenate resistance in Escherichia coli.
    Mobley HL; Chen CM; Silver S; Rosen BP
    Mol Gen Genet; 1983; 191(3):421-6. PubMed ID: 6355765
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Identification of Arg-12 in the active site of Escherichia coli K1 CMP-sialic acid synthetase.
    Stoughton DM; Zapata G; Picone R; Vann WF
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):397-402. PubMed ID: 10510306
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Preparation and crystallization of a Bacillus subtilis arsenate reductase.
    Guan Z; Hederstedt L; Li J; Su XD
    Acta Crystallogr D Biol Crystallogr; 2001 Nov; 57(Pt 11):1718-21. PubMed ID: 11679756
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Arsenate reductase II. Purine nucleoside phosphorylase in the presence of dihydrolipoic acid is a route for reduction of arsenate to arsenite in mammalian systems.
    Radabaugh TR; Sampayo-Reyes A; Zakharyan RA; Aposhian HV
    Chem Res Toxicol; 2002 May; 15(5):692-8. PubMed ID: 12018991
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Biochemical evidence for interaction between the two nucleotide binding domains of ArsA. Insights from mutants and ATP analogs.
    Jia H; Kaur P
    J Biol Chem; 2003 Feb; 278(8):6603-9. PubMed ID: 12488319
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A plasmid-encoded arsenite pump produces arsenite resistance in Escherichia coli.
    Rosen BP; Borbolla MG
    Biochem Biophys Res Commun; 1984 Nov; 124(3):760-5. PubMed ID: 6391481
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Structure and function prediction of arsenate reductase from Deinococcus indicus DR1.
    Chauhan D; Srivastava PA; Agnihotri V; Yennamalli RM; Priyadarshini R
    J Mol Model; 2019 Jan; 25(1):15. PubMed ID: 30610463
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Crystal structure of the YffB protein from Pseudomonas aeruginosa suggests a glutathione-dependent thiol reductase function.
    Teplyakov A; Pullalarevu S; Obmolova G; Doseeva V; Galkin A; Herzberg O; Dauter M; Dauter Z; Gilliland GL
    BMC Struct Biol; 2004 Mar; 4():5. PubMed ID: 15102337
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis.
    Krafft T; Macy JM
    Eur J Biochem; 1998 Aug; 255(3):647-53. PubMed ID: 9738904
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Energy-dependent arsenate efflux: the mechanism of plasmid-mediated resistance.
    Silver S; Keach D
    Proc Natl Acad Sci U S A; 1982 Oct; 79(20):6114-8. PubMed ID: 6755462
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Microbial transformation of elements: the case of arsenic and selenium.
    Stolz JF; Basu P; Oremland RS
    Int Microbiol; 2002 Dec; 5(4):201-7. PubMed ID: 12497186
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Crystallization and preliminary crystallographic characterization of LmACR2, an arsenate/antimonate reductase from Leishmania major.
    Bisacchi D; Zhou Y; Rosen BP; Mukhopadhyay R; Bordo D
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Oct; 62(Pt 10):976-9. PubMed ID: 17012788
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Clostridial glycine reductase: protein C, the acetyl group acceptor, catalyzes the arsenate-dependent decomposition of acetyl phosphate.
    Stadtman TC
    Proc Natl Acad Sci U S A; 1989 Oct; 86(20):7853-6. PubMed ID: 2813361
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Structural-functional analysis and molecular characterization of arsenate reductase from
    Bhati R; Nigam A; Ahmad S; Raza K; Singh R
    3 Biotech; 2023 Sep; 13(9):305. PubMed ID: 37593205
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Tailoring the Tag/Catcher System by Integrating Covalent Bonds and Noncovalent Interactions for Highly Efficient Protein Self-Assembly.
    Chen Y; Ming D; Zhu L; Huang H; Jiang L
    Biomacromolecules; 2022 Sep; 23(9):3936-3947. PubMed ID: 35998650
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Arsenic and Microorganisms: Genes, Molecular Mechanisms, and Recent Advances in Microbial Arsenic Bioremediation.
    William VU; Magpantay HD
    Microorganisms; 2023 Dec; 12(1):. PubMed ID: 38257901
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Application of Next Generation Sequencing (NGS) in Phage Displayed Peptide Selection to Support the Identification of Arsenic-Binding Motifs.
    Braun R; Schönberger N; Vinke S; Lederer F; Kalinowski J; Pollmann K
    Viruses; 2020 Nov; 12(12):. PubMed ID: 33261041
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Residue substitutions near the redox center of Bacillus subtilis Spx affect RNA polymerase interaction, redox control, and Spx-DNA contact at a conserved cis-acting element.
    Lin AA; Walthers D; Zuber P
    J Bacteriol; 2013 Sep; 195(17):3967-78. PubMed ID: 23813734
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Computational identification and analysis of arsenate reductase protein in Cronobacter sakazakii ATCC BAA-894 suggests potential microorganism for reducing arsenate.
    Chaturvedi N; Singh VK; Pandey PN
    J Struct Funct Genomics; 2013 Jun; 14(2):37-45. PubMed ID: 23666632
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Arginine 60 in the ArsC arsenate reductase of E. coli plasmid R773 determines the chemical nature of the bound As(III) product.
    DeMel S; Shi J; Martin P; Rosen BP; Edwards BF
    Protein Sci; 2004 Sep; 13(9):2330-40. PubMed ID: 15295115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.