These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 14592932)

  • 1. Baroreflexes of the rat. III. Open-loop gain and electroencephalographic arousal.
    Dworkin BR; Dworkin S
    Am J Physiol Regul Integr Comp Physiol; 2004 Mar; 286(3):R597-605. PubMed ID: 14592932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Baroreflexes of the rat. VI. Sleep and responses to aortic nerve stimulation in the dmNTS.
    Tang X; Dworkin BR
    Am J Physiol Regul Integr Comp Physiol; 2010 May; 298(5):R1428-34. PubMed ID: 20106994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Central and baroreflex control of heart rate during the wake-sleep cycle in rat.
    Zoccoli G; Andreoli E; Bojic T; Cianci T; Franzini C; Predieri S; Lenzi P
    Sleep; 2001 Nov; 24(7):753-8. PubMed ID: 11683478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Baroreflex frequency-response characteristics to aortic depressor and carotid sinus nerve stimulation in rats.
    Fan W; Reynolds PJ; Andresen MC
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2218-27. PubMed ID: 8997277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Baroreflexes of the rat. V. Tetanus-induced potentiation of ADN A-fiber responses at the NTS.
    Tang X; Dworkin BR
    Am J Physiol Regul Integr Comp Physiol; 2007 Dec; 293(6):R2254-9. PubMed ID: 17913871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Baroreflexes of the rat. IV. ADN-evoked responses at the NTS.
    Tang X; Dworkin BR
    Am J Physiol Regul Integr Comp Physiol; 2007 Dec; 293(6):R2243-53. PubMed ID: 17898125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Late-developing rostral ventrolateral medullary surface responses to cardiovascular challenges during sleep.
    Richard CA; Rector DM; Macey PM; Ali N; Harper RM
    Brain Res; 2003 Sep; 985(1):65-77. PubMed ID: 12957369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. L-dopaergic components in the caudal ventrolateral medulla in baroreflex neurotransmission.
    Miyamae T; Goshima Y; Yue JL; Misu Y
    Neuroscience; 1999; 92(1):137-49. PubMed ID: 10392837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carotid and aortic baroreflexes of the rat: I. Open-loop steady-state properties and blood pressure variability.
    Dworkin BR; Dworkin S; Tang X
    Am J Physiol Regul Integr Comp Physiol; 2000 Nov; 279(5):R1910-21. PubMed ID: 11049877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carotid and aortic baroreflexes of the rat: II. Open-loop frequency response and the blood pressure spectrum.
    Dworkin BR; Tang X; Snyder AJ; Dworkin S
    Am J Physiol Regul Integr Comp Physiol; 2000 Nov; 279(5):R1922-33. PubMed ID: 11049878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiovascular responses elicited by continuous versus intermittent electrical stimulation of the aortic depressor nerve in conscious rats.
    Brognara F; Dias DP; Castania JA; Fazan R; Lewis SJ; Salgado HC
    Life Sci; 2016 Mar; 148():99-105. PubMed ID: 26876918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in cardiovascular function during the sleep onset period in young adults.
    Carrington MJ; Barbieri R; Colrain IM; Crowley KE; Kim Y; Trinder J
    J Appl Physiol (1985); 2005 Feb; 98(2):468-76. PubMed ID: 15448124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Closed-loop estimation of the open-loop carotid sinus baroreflex transfer function for the use of animal experiments in space.
    Kawada T; Sato T; Shishido T; Sugimachi M; Sunagawa K
    J Gravit Physiol; 2000 Jul; 7(2):P137-8. PubMed ID: 12697495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arterial baroreflex deficit induced organ damage in sinoaortic denervated rats.
    Shan ZZ; Dai SM; Su DF
    J Cardiovasc Pharmacol; 2001 Sep; 38(3):427-37. PubMed ID: 11486247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dmNTS is not the source of increased blood pressure variability in baroreflex denervated rats.
    Tang X; Dworkin BR
    Auton Neurosci; 2009 Jun; 148(1-2):21-7. PubMed ID: 19285454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medial prefrontal cortex depressor response: role of the solitary tract nucleus in the rat.
    Owens NC; Sartor DM; Verberne AJ
    Neuroscience; 1999; 89(4):1331-46. PubMed ID: 10362318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of afferent, central, and efferent components of the baroreceptor reflex in mice.
    Ma X; Abboud FM; Chapleau MW
    Am J Physiol Regul Integr Comp Physiol; 2002 Nov; 283(5):R1033-40. PubMed ID: 12376395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential contribution of afferent and central pathways to the development of baroreflex dysfunction in chronic kidney disease.
    Salman IM; Hildreth CM; Ameer OZ; Phillips JK
    Hypertension; 2014 Apr; 63(4):804-10. PubMed ID: 24379179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroencephalographic arousals during sleep do not alter the pressor response to Cheyne-Stokes respiration in subjects with chronic heart failure.
    Willson GN; Grunstein RR; Kirjavainen T; Young IH; Piper AJ; Sullivan CE; Wilcox I
    J Sleep Res; 2007 Dec; 16(4):421-7. PubMed ID: 18036088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The baroreflex contribution to spontaneous heart rhythm assessed with a mathematical model in rats.
    Berteotti C; Franzini C; Lenzi P; Magosso E; Ursino M; Zoccoli G; Silvani A
    Auton Neurosci; 2008 Feb; 138(1-2):24-30. PubMed ID: 17936694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.