These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 1459413)

  • 1. Interrelations between populations of methanogenic archaea and sulfate-reducing bacteria in the human colon.
    Pochart P; Doré J; Lémann F; Goderel I; Rambaud JC
    FEMS Microbiol Lett; 1992 Nov; 77(1-3):225-8. PubMed ID: 1459413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative determination of H2-utilizing acetogenic and sulfate-reducing bacteria and methanogenic archaea from digestive tract of different mammals.
    Morvan B; Bonnemoy F; Fonty G; Gouet P
    Curr Microbiol; 1996 Mar; 32(3):129-33. PubMed ID: 8704656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyxigraphic sampling to enumerate methanogens and anaerobes in the right colon of healthy humans.
    Pochart P; Lémann F; Flourié B; Pellier P; Goderel I; Rambaud JC
    Gastroenterology; 1993 Nov; 105(5):1281-5. PubMed ID: 8224632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of dietary sulphate in the regulation of methanogenesis in the human large intestine.
    Christl SU; Gibson GR; Cummings JH
    Gut; 1992 Sep; 33(9):1234-8. PubMed ID: 1427377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2.
    Thauer RK
    Curr Opin Microbiol; 2011 Jun; 14(3):292-9. PubMed ID: 21489863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and activities of sulfate-reducing and methanogenic bacteria in human oral cavity.
    Robichaux M; Howell M; Boopathy R
    Curr Microbiol; 2003 Jul; 47(1):12-6. PubMed ID: 12783186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.
    Stams AJ; Plugge CM; de Bok FA; van Houten BH; Lens P; Dijkman H; Weijma J
    Water Sci Technol; 2005; 52(1-2):13-20. PubMed ID: 16187442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea.
    Wilms R; Sass H; Köpke B; Cypionka H; Engelen B
    FEMS Microbiol Ecol; 2007 Mar; 59(3):611-21. PubMed ID: 17059478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of fermentation reactions in different regions of the human colon.
    Macfarlane GT; Gibson GR; Cummings JH
    J Appl Bacteriol; 1992 Jan; 72(1):57-64. PubMed ID: 1541601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methanogenic and Sulfate-Reducing Activities in a Hypersaline Microbial Mat and Associated Microbial Diversity.
    Cadena S; García-Maldonado JQ; López-Lozano NE; Cervantes FJ
    Microb Ecol; 2018 May; 75(4):930-940. PubMed ID: 29116347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competition for hydrogen by human faecal bacteria: evidence for the predominance of methane producing bacteria.
    Strocchi A; Furne JK; Ellis CJ; Levitt MD
    Gut; 1991 Dec; 32(12):1498-501. PubMed ID: 1773956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog.
    Kotsyurbenko OR; Chin KJ; Glagolev MV; Stubner S; Simankova MV; Nozhevnikova AN; Conrad R
    Environ Microbiol; 2004 Nov; 6(11):1159-73. PubMed ID: 15479249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methanogens outcompete sulphate reducing bacteria for H2 in the human colon.
    Strocchi A; Furne J; Ellis C; Levitt MD
    Gut; 1994 Aug; 35(8):1098-101. PubMed ID: 7926913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial community analysis of rectal methanogens and sulfate reducing bacteria in two non-human primate species.
    Nakamura N; Leigh SR; Mackie RI; Gaskins HR
    J Med Primatol; 2009 Oct; 38(5):360-70. PubMed ID: 19548980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relations between transit time, fermentation products, and hydrogen consuming flora in healthy humans.
    El Oufir L; Flourié B; Bruley des Varannes S; Barry JL; Cloarec D; Bornet F; Galmiche JP
    Gut; 1996 Jun; 38(6):870-7. PubMed ID: 8984026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic degradation of citrate under sulfate reducing and methanogenic conditions.
    Gámez VM; Sierra-Alvarez R; Waltz RJ; Field JA
    Biodegradation; 2009 Jul; 20(4):499-510. PubMed ID: 19089588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enumeration of selected anaerobic bacterial groups in cecal and colonic contents of growing-finishing pigs.
    Butine TJ; Leedle JA
    Appl Environ Microbiol; 1989 May; 55(5):1112-6. PubMed ID: 2757376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria.
    Gibson GR; Cummings JH; Macfarlane GT
    Appl Environ Microbiol; 1988 Nov; 54(11):2750-5. PubMed ID: 3214155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecogenomics reveals community interactions in a long-term methanogenic bioreactor and a rapid switch to sulfate-reducing conditions.
    St James AR; Richardson RE
    FEMS Microbiol Ecol; 2020 May; 96(5):. PubMed ID: 32188966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting relationships between biogeochemistry and prokaryotic diversity depth profiles along an estuarine sediment gradient.
    O'Sullivan LA; Sass AM; Webster G; Fry JC; Parkes RJ; Weightman AJ
    FEMS Microbiol Ecol; 2013 Jul; 85(1):143-57. PubMed ID: 23480711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.