These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 1459437)

  • 1. Using markers in gene introgression breeding programs.
    Hospital F; Chevalet C; Mulsant P
    Genetics; 1992 Dec; 132(4):1199-210. PubMed ID: 1459437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection strategies for the development of rye introgression libraries.
    Falke KC; Miedaner T; Frisch M
    Theor Appl Genet; 2009 Aug; 119(4):595-603. PubMed ID: 19484432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of different foreground and background selection methods in marker-assisted introgression.
    Bai JY; Zhang Q; Jia XP
    Yi Chuan Xue Bao; 2006 Dec; 33(12):1073-80. PubMed ID: 17185166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection theory for marker-assisted backcrossing.
    Frisch M; Melchinger AE
    Genetics; 2005 Jun; 170(2):909-17. PubMed ID: 15802512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marker-assisted introgression in backcross breeding programs.
    Visscher PM; Haley CS; Thompson R
    Genetics; 1996 Dec; 144(4):1923-32. PubMed ID: 8978075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size of donor chromosome segments around introgressed loci and reduction of linkage drag in marker-assisted backcross programs.
    Hospital F
    Genetics; 2001 Jul; 158(3):1363-79. PubMed ID: 11454782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized breeding strategies for multiple trait integration: I. Minimizing linkage drag in single event introgression.
    Peng T; Sun X; Mumm RH
    Mol Breed; 2014; 33(1):89-104. PubMed ID: 24482600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection strategies for marker-assisted backcrossing with high-throughput marker systems.
    Herzog E; Frisch M
    Theor Appl Genet; 2011 Jul; 123(2):251-60. PubMed ID: 21476041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The length of the intact donor chromosome segment around a target gene in marker-assisted backcrossing.
    Frisch M; Melchinger AE
    Genetics; 2001 Mar; 157(3):1343-56. PubMed ID: 11238419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Marker-assisted introgression of quantitative trait loci.
    Hospital F; Charcosset A
    Genetics; 1997 Nov; 147(3):1469-85. PubMed ID: 9383086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic approaches to the improvement of disease resistance in farm animals.
    Soller M; Andersson L
    Rev Sci Tech; 1998 Apr; 17(1):329-45. PubMed ID: 9638821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term selection strategies for complex traits using high-density genetic markers.
    Kemper KE; Bowman PJ; Pryce JE; Hayes BJ; Goddard ME
    J Dairy Sci; 2012 Aug; 95(8):4646-56. PubMed ID: 22818479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using markers to reduce the variation in the genomic composition in marker-assisted backcrossing.
    Servin B
    Genet Res; 2005 Apr; 85(2):151-7. PubMed ID: 16174333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters.
    Muir WM
    J Anim Breed Genet; 2007 Dec; 124(6):342-55. PubMed ID: 18076471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution mapping of a new brown planthopper (BPH) resistance gene, Bph18(t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.).
    Jena KK; Jeung JU; Lee JH; Choi HC; Brar DS
    Theor Appl Genet; 2006 Jan; 112(2):288-97. PubMed ID: 16240104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines.
    Bouchez A; Hospital F; Causse M; Gallais A; Charcosset A
    Genetics; 2002 Dec; 162(4):1945-59. PubMed ID: 12524362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic selection in dairy cattle simulated populations.
    Seno LO; Guidolin DGF; Aspilcueta-Borquis RR; Nascimento GBD; Silva TBRD; Oliveira HN; Munari DP
    J Dairy Res; 2018 May; 85(2):125-132. PubMed ID: 29785919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introgressing multiple QTL in breeding programmes of limited size.
    Piyasatian N; Fernando RL; Dekkers JC
    J Anim Breed Genet; 2008 Feb; 125(1):50-6. PubMed ID: 18254826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive gene flow does not necessarily maximize the genetic gain of genomic breeding programs in the presence of genotype-by-environment interaction.
    Cao L; Mulder HA; Liu H; Nielsen HM; S Rensen AC
    J Dairy Sci; 2021 Jul; 104(7):8122-8134. PubMed ID: 33934864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced optimum contribution selection as a tool to improve regional cattle breeds: a feasibility study for Vorderwald cattle.
    Kohl S; Wellmann R; Herold P
    Animal; 2020 Jan; 14(1):1-12. PubMed ID: 31296274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.