BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 1459458)

  • 1. Serine-to-alanine substitutions at the amino-terminal region of phytochrome A result in an increase in biological activity.
    Stockhaus J; Nagatani A; Halfter U; Kay S; Furuya M; Chua NH
    Genes Dev; 1992 Dec; 6(12A):2364-72. PubMed ID: 1459458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The serine-rich N-terminal domain of oat phytochrome a helps regulate light responses and subnuclear localization of the photoreceptor.
    Casal JJ; Davis SJ; Kirchenbauer D; Viczian A; Yanovsky MJ; Clough RC; Kircher S; Jordan-Beebe ET; Schäfer E; Nagy F; Vierstra RD
    Plant Physiol; 2002 Jul; 129(3):1127-37. PubMed ID: 12114567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of regions within the N-terminal 6-kilodalton domain of phytochrome A that modulate its biological activity.
    Jordan ET; Marita JM; Clough RC; Vierstra RD
    Plant Physiol; 1997 Oct; 115(2):693-704. PubMed ID: 9342873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An amino-terminal deletion of rice phytochrome A results in a dominant negative suppression of tobacco phytochrome A activity in transgenic tobacco seedlings.
    Emmler K; Stockhaus J; Chua NH; Schäfer E
    Planta; 1995; 197(1):103-10. PubMed ID: 7580859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rice phytochrome A in Arabidopsis: The Role of the N-terminus under red and far-red light.
    Kneissl J; Shinomura T; Furuya M; Bolle C
    Mol Plant; 2008 Jan; 1(1):84-102. PubMed ID: 20031917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectrophotometric and molecular properties of mutated rice phytochrome A.
    Tomizawa K; Stockhaus J; Chua NH; Furuya M
    Plant Cell Physiol; 1995 Apr; 36(3):511-6. PubMed ID: 7757341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysine 206 in Arabidopsis phytochrome A is the major site for ubiquitin-dependent protein degradation.
    Rattanapisit K; Cho MH; Bhoo SH
    J Biochem; 2016 Feb; 159(2):161-9. PubMed ID: 26314334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The serine-rich N-terminal region of Arabidopsis phytochrome A is required for protein stability.
    Trupkin SA; Debrieux D; Hiltbrunner A; Fankhauser C; Casal JJ
    Plant Mol Biol; 2007 Mar; 63(5):669-78. PubMed ID: 17160561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-induced nuclear import of phytochrome-A:GFP fusion proteins is differentially regulated in transgenic tobacco and Arabidopsis.
    Kim L; Kircher S; Toth R; Adam E; Schäfer E; Nagy F
    Plant J; 2000 Apr; 22(2):125-33. PubMed ID: 10792828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytochrome A is an irradiance-dependent red light sensor.
    Franklin KA; Allen T; Whitelam GC
    Plant J; 2007 Apr; 50(1):108-17. PubMed ID: 17346261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways.
    Monte E; Alonso JM; Ecker JR; Zhang Y; Li X; Young J; Austin-Phillips S; Quail PH
    Plant Cell; 2003 Sep; 15(9):1962-80. PubMed ID: 12953104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a strong dominant phytochrome A mutation unique to phytochrome A signal propagation.
    Fry RC; Habashi J; Okamoto H; Deng XW
    Plant Physiol; 2002 Sep; 130(1):457-65. PubMed ID: 12226524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of a cDNA-clone coding for potato type A phytochrome.
    Heyer A; Gatz C
    Plant Mol Biol; 1992 Feb; 18(3):535-44. PubMed ID: 1536928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The system of phytochromes: photobiophysics and photobiochemistry in vivo.
    Sineshchekov VA
    Membr Cell Biol; 1998; 12(5):691-720. PubMed ID: 10379648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of functional oat phytochrome A in transgenic rice.
    Clough RC; Casal JJ; Jordan ET; Christou P; Vierstra RD
    Plant Physiol; 1995 Nov; 109(3):1039-45. PubMed ID: 8552709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Function of phytochrome A in potato plants as revealed through the study of transgenic plants.
    Heyer AG; Mozley D; Landschütze V; Thomas B; Gatz C
    Plant Physiol; 1995 Sep; 109(1):53-61. PubMed ID: 7480332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of rice phytochrome A mutants.
    Takano M; Kanegae H; Shinomura T; Miyao A; Hirochika H; Furuya M
    Plant Cell; 2001 Mar; 13(3):521-34. PubMed ID: 11251094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue-specific and light-dependent regulation of phytochrome gene expression in rice.
    Baba-Kasai A; Hara N; Takano M
    Plant Cell Environ; 2014 Dec; 37(12):2654-66. PubMed ID: 24738738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequences within both the N- and C-terminal domains of phytochrome A are required for PFR ubiquitination and degradation.
    Clough RC; Jordan-Beebe ET; Lohman KN; Marita JM; Walker JM; Gatz C; Vierstra RD
    Plant J; 1999 Jan; 17(2):155-67. PubMed ID: 10074713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carboxy-terminal deletion analysis of oat phytochrome A reveals the presence of separate domains required for structure and biological activity.
    Cherry JR; Hondred D; Walker JM; Keller JM; Hershey HP; Vierstra RD
    Plant Cell; 1993 May; 5(5):565-75. PubMed ID: 8518556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.