These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 14594710)

  • 1. Protein structural class identification directly from NMR spectra using averaged chemical shifts.
    Mielke SP; Krishnan VV
    Bioinformatics; 2003 Nov; 19(16):2054-64. PubMed ID: 14594710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histogram-based scoring schemes for protein NMR resonance assignment.
    Wan X; Tegos T; Lin G
    J Bioinform Comput Biol; 2004 Dec; 2(4):747-64. PubMed ID: 15617164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An algebraic geometry approach to protein structure determination from NMR data.
    Wang L; Mettu RR; Donald BR
    Proc IEEE Comput Syst Bioinform Conf; 2005; ():235-46. PubMed ID: 16447981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of data mining tools for classification of protein structural class from residue based averaged NMR chemical shifts.
    Kumar AV; Ali RF; Cao Y; Krishnan VV
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1545-52. PubMed ID: 25758094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Hausdorff-based NOE assignment algorithm using protein backbone determined from residual dipolar couplings and rotamer patterns.
    Zeng J; Tripathy C; Zhou P; Donald BR
    Comput Syst Bioinformatics Conf; 2008; 7():169-81. PubMed ID: 19642278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of protein continuum secondary structure with probabilistic models based on NMR solved structures.
    Bodén M; Yuan Z; Bailey TL
    BMC Bioinformatics; 2006 Feb; 7():68. PubMed ID: 16478545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput backbone resonance assignment of small 13C,15N-labeled proteins by a triple-resonance experiment with four sequential connectivity pathways using chemical shift-dependent, apparent 1J(1H,13C): HNCACBcodedHAHB.
    Pegan S; Kwiatkowski W; Choe S; Riek R
    J Magn Reson; 2003 Dec; 165(2):315-9. PubMed ID: 14643715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconsidering complete search algorithms for protein backbone NMR assignment.
    Vitek O; Bailey-Kellogg C; Craig B; Kuliniewicz P; Vitek J
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii230-6. PubMed ID: 16204110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR in structural genomics to increase structural coverage of the protein universe: Delivered by Prof. Kurt Wüthrich on 7 July 2013 at the 38th FEBS Congress in St. Petersburg, Russia.
    Serrano P; Dutta SK; Proudfoot A; Mohanty B; Susac L; Martin B; Geralt M; Jaroszewski L; Godzik A; Elsliger M; Wilson IA; Wüthrich K
    FEBS J; 2016 Nov; 283(21):3870-3881. PubMed ID: 27154589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SimShift: identifying structural similarities from NMR chemical shifts.
    Ginzinger SW; Fischer J
    Bioinformatics; 2006 Feb; 22(4):460-5. PubMed ID: 16317071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput 3D structural homology detection via NMR resonance assignment.
    Langmead CJ; Donald BR
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():278-89. PubMed ID: 16448021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comment on 'protein isoelectric point as a predictor for increased crystallization screening efficiency'.
    Huber T; Kobe B
    Bioinformatics; 2004 Sep; 20(14):2169-70; author reply 2171-4. PubMed ID: 15317693
    [No Abstract]   [Full Text] [Related]  

  • 13. An empirical correlation between secondary structure content and averaged chemical shifts in proteins.
    Sibley AB; Cosman M; Krishnan VV
    Biophys J; 2003 Feb; 84(2 Pt 1):1223-7. PubMed ID: 12547802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local structure prediction with local structure-based sequence profiles.
    Yang AS; Wang LY
    Bioinformatics; 2003 Jul; 19(10):1267-74. PubMed ID: 12835271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast protein fold estimation from NMR-derived distance restraints.
    Angyán AF; Perczel A; Pongor S; Gáspári Z
    Bioinformatics; 2008 Jan; 24(2):272-5. PubMed ID: 18003647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimizing the overlap problem in protein NMR: a computational framework for precision amino acid labeling.
    Sweredoski MJ; Donovan KJ; Nguyen BD; Shaka AJ; Baldi P
    Bioinformatics; 2007 Nov; 23(21):2829-35. PubMed ID: 17895278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient and accurate algorithm for assigning nuclear overhauser effect restraints using a rotamer library ensemble and residual dipolar couplings.
    Wang L; Donald BR
    Proc IEEE Comput Syst Bioinform Conf; 2005; ():189-202. PubMed ID: 16447976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the accuracy of protein structures by quantum mechanical computations of 13C(alpha) chemical shifts.
    Vila JA; Scheraga HA
    Acc Chem Res; 2009 Oct; 42(10):1545-53. PubMed ID: 19572703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational assignment of protein backbone NMR peaks by efficient bounding and filtering.
    Lin G; Xu D; Chen ZZ; Jiang T; Wen J; Xu Y
    J Bioinform Comput Biol; 2003 Jul; 1(2):387-409. PubMed ID: 15290777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New approaches to the dynamic interpretation and prediction of NMR relaxation data from proteins.
    Brüschweiler R
    Curr Opin Struct Biol; 2003 Apr; 13(2):175-83. PubMed ID: 12727510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.