These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 14595523)

  • 1. Metabolic engineering for improved fermentation of pentoses by yeasts.
    Jeffries TW; Jin YS
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):495-509. PubMed ID: 14595523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability.
    Toivari MH; Aristidou A; Ruohonen L; Penttilä M
    Metab Eng; 2001 Jul; 3(3):236-49. PubMed ID: 11461146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation.
    Bera AK; Ho NW; Khan A; Sedlak M
    J Ind Microbiol Biotechnol; 2011 May; 38(5):617-26. PubMed ID: 20714780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate.
    Johansson B; Christensson C; Hobley T; Hahn-Hägerdal B
    Appl Environ Microbiol; 2001 Sep; 67(9):4249-55. PubMed ID: 11526030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH; Kodaki T; Park YC; Seo JH
    J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR; Kwee NR; Kim H; Jin YS
    FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethanolic fermentation of pentoses in lignocellulose hydrolysates.
    Hahn-Hägerdal B; Lindén T; Senac T; Skoog K
    Appl Biochem Biotechnol; 1991; 28-29():131-44. PubMed ID: 1929360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters.
    Gonçalves DL; Matsushika A; de Sales BB; Goshima T; Bon EP; Stambuk BU
    Enzyme Microb Technol; 2014 Sep; 63():13-20. PubMed ID: 25039054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.
    Matsushika A; Sawayama S
    Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and enzymatic comparison between Pichia stipitis and recombinant Saccharomyces cerevisiae on xylose fermentation.
    Guo C; Jiang N
    World J Microbiol Biotechnol; 2013 Mar; 29(3):541-7. PubMed ID: 23180545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion.
    Hector RE; Dien BS; Cotta MA; Qureshi N
    J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1193-202. PubMed ID: 21107642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast metabolic engineering for hemicellulosic ethanol production.
    Van Vleet JH; Jeffries TW
    Curr Opin Biotechnol; 2009 Jun; 20(3):300-6. PubMed ID: 19545992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae.
    Parachin NS; Bergdahl B; van Niel EW; Gorwa-Grauslund MF
    Metab Eng; 2011 Sep; 13(5):508-17. PubMed ID: 21642010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae.
    Hasunuma T; Sung KM; Sanda T; Yoshimura K; Matsuda F; Kondo A
    Appl Microbiol Biotechnol; 2011 May; 90(3):997-1004. PubMed ID: 21246355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The activity of xylose reductase and xylitol dehydrogenase in yeasts].
    Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI
    Mikrobiologiia; 2003; 72(4):466-9. PubMed ID: 14526534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.
    Matsushika A; Inoue H; Murakami K; Takimura O; Sawayama S
    Bioresour Technol; 2009 Apr; 100(8):2392-8. PubMed ID: 19128960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture.
    Pitkänen JP; Aristidou A; Salusjärvi L; Ruohonen L; Penttilä M
    Metab Eng; 2003 Jan; 5(1):16-31. PubMed ID: 12749841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.