BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 14595766)

  • 21. Dopamine-immunoreactive neurons in the blowfly visual system: light and electron microscopic immunocytochemistry.
    Nässel DR; Elekes K; Johansson KU
    J Chem Neuroanat; 1988; 1(6):311-25. PubMed ID: 3270359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anatomical organization of retinotopic motion-sensitive pathways in the optic lobes of flies.
    Douglass JK; Strausfeld NJ
    Microsc Res Tech; 2003 Oct; 62(2):132-50. PubMed ID: 12966499
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural organization of the second optic neuropil, the medulla, in the highly visual semiterrestrial crab Neohelice granulata.
    Sztarker J; Tomsic D
    J Comp Neurol; 2014 Oct; 522(14):3177-93. PubMed ID: 24659096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visual system of calliphorid flies: motion- and orientation-sensitive visual interneurons supplying dorsal optic glomeruli.
    Okamura JY; Strausfeld NJ
    J Comp Neurol; 2007 Jan; 500(1):189-208. PubMed ID: 17099892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transition from marine to terrestrial ecologies: changes in olfactory and tritocerebral neuropils in land-living isopods.
    Harzsch S; Rieger V; Krieger J; Seefluth F; Strausfeld NJ; Hansson BS
    Arthropod Struct Dev; 2011 May; 40(3):244-57. PubMed ID: 21641866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Small-field neurons associated with oculomotor control in muscoid flies: cellular organization in the lobula plate.
    Strausfeld NJ; Gilbert C
    J Comp Neurol; 1992 Feb; 316(1):56-71. PubMed ID: 1573051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How visual space maps in the optic neuropils of a crab.
    De Astrada MB; Medan V; Tomsic D
    J Comp Neurol; 2011 Jun; 519(9):1631-9. PubMed ID: 21452243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The computational basis of an identified neuronal circuit for elementary motion detection in dipterous insects.
    Higgins CM; Douglass JK; Strausfeld NJ
    Vis Neurosci; 2004; 21(4):567-86. PubMed ID: 15579222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural organization of afferent pathways from the stomatopod compound eye.
    Thoen HH; Strausfeld NJ; Marshall J
    J Comp Neurol; 2017 Oct; 525(14):3010-3030. PubMed ID: 28577301
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatio-temporal pattern of neuronal differentiation in the Drosophila visual system: A user's guide to the dynamic morphology of the developing optic lobe.
    Ngo KT; Andrade I; Hartenstein V
    Dev Biol; 2017 Aug; 428(1):1-24. PubMed ID: 28533086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organization of local interneurons in optic glomeruli of the dipterous visual system and comparisons with the antennal lobes.
    Strausfeld NJ; Sinakevitch I; Okamura JY
    Dev Neurobiol; 2007 Sep; 67(10):1267-88. PubMed ID: 17638381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways.
    Otsuna H; Ito K
    J Comp Neurol; 2006 Aug; 497(6):928-58. PubMed ID: 16802334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Serotonin-like immunoreactivity in the optic lobes of three insect species.
    Nässel DR; Klemm N
    Cell Tissue Res; 1983; 232(1):129-40. PubMed ID: 6349816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two visual systems in one eyestalk: The unusual optic lobe metamorphosis in the stomatopod Alima pacifica.
    Lin C; Cronin TW
    Dev Neurobiol; 2018 Jan; 78(1):3-14. PubMed ID: 29082670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functionally and anatomically segregated visual pathways in the lobula complex of a calliphorid fly.
    Douglass JK; Strausfeld NJ
    J Comp Neurol; 1998 Jun; 396(1):84-104. PubMed ID: 9623889
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuropeptide Y-immunoreactive neuronal system and colocalization with FMRFamide in the optic lobe and peduncle complex of the octopus (Octopus vulgaris).
    Suzuki H; Yamamoto T; Nakagawa M; Uemura H
    Cell Tissue Res; 2002 Feb; 307(2):255-64. PubMed ID: 11845332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatio-temporal pattern of programmed cell death in the developing Drosophila optic lobe.
    Togane Y; Ayukawa R; Hara Y; Akagawa H; Iwabuchi K; Tsujimura H
    Dev Growth Differ; 2012 May; 54(4):503-18. PubMed ID: 22587328
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pigment-dispersing hormone-immunoreactive neurons and their relation to serotonergic neurons in the blowfly and cockroach visual system.
    Nässel DR; Shiga S; Wikstrand EM; Rao KR
    Cell Tissue Res; 1991 Dec; 266(3):511-23. PubMed ID: 1811881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping and ultrastructure of serotonin-immunoreactive neurons in the optic lobes of three insect species.
    Nässel DR; Meyer EP; Klemm N
    J Comp Neurol; 1985 Feb; 232(2):190-204. PubMed ID: 3973090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei.
    Strausfeld NJ; Weltzien P; Barth FG
    J Comp Neurol; 1993 Feb; 328(1):63-75. PubMed ID: 7679123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.