BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 14596609)

  • 1. Interactions between charged amino acid residues within transmembrane helices in the sulfate transporter SHST1.
    Shelden MC; Loughlin P; Tierney ML; Howitt SM
    Biochemistry; 2003 Nov; 42(44):12941-9. PubMed ID: 14596609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and function of a model member of the SulP transporter family.
    Loughlin P; Shelden MC; Tierney ML; Howitt SM
    Cell Biochem Biophys; 2002; 36(2-3):183-90. PubMed ID: 12139404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polar residues in a conserved motif spanning helices 1 and 2 are functionally important in the SulP transporter family.
    Leves FP; Tierney ML; Howitt SM
    Int J Biochem Cell Biol; 2008; 40(11):2596-605. PubMed ID: 18585087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of conserved arginine residues in the metal-tetracycline/H+ antiporter of Escherichia coli.
    Kimura T; Nakatani M; Kawabe T; Yamaguchi A
    Biochemistry; 1998 Apr; 37(16):5475-80. PubMed ID: 9548929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-function analysis of the highly conserved charged residues of the membrane protein FT1, the main folic acid transporter of the protozoan parasite Leishmania.
    Dridi L; Haimeur A; Ouellette M
    Biochem Pharmacol; 2010 Jan; 79(1):30-8. PubMed ID: 19660435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helix 8 and helix 10 are involved in substrate recognition in the rat monocarboxylate transporter MCT1.
    Rahman B; Schneider HP; Bröer A; Deitmer JW; Bröer S
    Biochemistry; 1999 Aug; 38(35):11577-84. PubMed ID: 10471310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molybdate transport through the plant sulfate transporter SHST1.
    Fitzpatrick KL; Tyerman SD; Kaiser BN
    FEBS Lett; 2008 Apr; 582(10):1508-13. PubMed ID: 18396170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proline residues in two tightly coupled helices of the sulphate transporter, SHST1, are important for sulphate transport.
    Shelden MC; Loughlin P; Tierney ML; Howitt SM
    Biochem J; 2001 Jun; 356(Pt 2):589-94. PubMed ID: 11368789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replacements of basic and hydroxyl amino acids identify structurally and functionally sensitive regions of the mitochondrial phosphate transport protein.
    Briggs C; Mincone L; Wohlrab H
    Biochemistry; 1999 Apr; 38(16):5096-102. PubMed ID: 10213613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single amino acid substitution in the putative transmembrane helix V in KdpB of the KdpFABC complex of Escherichia coli uncouples ATPase activity and ion transport.
    Bramkamp M; Altendorf K
    Biochemistry; 2005 Jun; 44(23):8260-6. PubMed ID: 15938615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Only one of the charged amino acids located in membrane-spanning regions is important for the function of the Saccharomyces cerevisiae uracil permease.
    Pinson B; Chevallier J; Urban-Grimal D
    Biochem J; 1999 Apr; 339 ( Pt 1)(Pt 1):37-42. PubMed ID: 10085225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial phosphate transport protein. replacements of glutamic, aspartic, and histidine residues affect transport and protein conformation and point to a coupled proton transport path.
    Phelps A; Briggs C; Mincone L; Wohlrab H
    Biochemistry; 1996 Aug; 35(33):10757-62. PubMed ID: 8718866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved residues R420 and Q428 in a cytoplasmic loop of the citrate/malate transporter CimH of Bacillus subtilis are accessible from the external face of the membrane.
    Krom BP; Lolkema JS
    Biochemistry; 2003 Jan; 42(2):467-74. PubMed ID: 12525174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional importance of GGXG sequence motifs in putative reentrant loops of 2HCT and ESS transport proteins.
    Dobrowolski A; Lolkema JS
    Biochemistry; 2009 Aug; 48(31):7448-56. PubMed ID: 19594131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutralization of conservative charged transmembrane residues in the Na+/glucose cotransporter SGLT1.
    Panayotova-Heiermann M; Loo DD; Lam JT; Wright EM
    Biochemistry; 1998 Jul; 37(29):10522-8. PubMed ID: 9671524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid residues important for substrate specificity of the amino acid permeases Can1p and Gnp1p in Saccharomyces cerevisiae.
    Regenberg B; Kielland-Brandt MC
    Yeast; 2001 Nov; 18(15):1429-40. PubMed ID: 11746604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homodimeric mitochondrial phosphate transport protein. Transient subunit/subunit contact site between the transport relevant transmembrane helices A.
    Phelps A; Wohlrab H
    Biochemistry; 2004 May; 43(20):6200-7. PubMed ID: 15147204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the role of positive residues in the ADP/ATP carrier from yeast. The effect of six arginine mutations of oxidative phosphorylation and AAC expression.
    Müller V; Basset G; Nelson DR; Klingenberg M
    Biochemistry; 1996 Dec; 35(50):16132-43. PubMed ID: 8973185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobic helical hairpins: design and packing interactions in membrane environments.
    Johnson RM; Heslop CL; Deber CM
    Biochemistry; 2004 Nov; 43(45):14361-9. PubMed ID: 15533040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of the seryl and threonyl residues of the fifth transmembrane domain to the substrate specificity of yeast plasma membrane Na+/H+ antiporters.
    Kinclova-Zimmermannova O; Zavrel M; Sychrova H
    Mol Membr Biol; 2006; 23(4):349-61. PubMed ID: 16923728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.