BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 14596795)

  • 1. De novo design of a molecular switch: phosphorylation-dependent association of designed peptides.
    Signarvic RS; DeGrado WF
    J Mol Biol; 2003 Nov; 334(1):1-12. PubMed ID: 14596795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a leucine zipper coiled coil stabilized 1.4 kcal mol-1 by phosphorylation of a serine in the e position.
    Szilák L; Moitra J; Vinson C
    Protein Sci; 1997 Jun; 6(6):1273-83. PubMed ID: 9194187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution protein design with backbone freedom.
    Harbury PB; Plecs JJ; Tidor B; Alber T; Kim PS
    Science; 1998 Nov; 282(5393):1462-7. PubMed ID: 9822371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A strategy for the de novo design of helical proteins with stable folds.
    Kuroda Y
    Protein Eng; 1995 Feb; 8(2):97-101. PubMed ID: 7630891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pH-dependent tertiary structure of a designed helix-loop-helix dimer.
    Dolphin GT; Baltzer L
    Fold Des; 1997; 2(5):319-30. PubMed ID: 9377715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissection of the de novo designed peptide alpha t alpha: stability and properties of the intact molecule and its constituent helices.
    Fezoui Y; Braswell EH; Xian W; Osterhout JJ
    Biochemistry; 1999 Mar; 38(9):2796-804. PubMed ID: 10052951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction and characterization of monomeric tryptophan repressor: a model for an early intermediate in the folding of a dimeric protein.
    Shao X; Hensley P; Matthews CR
    Biochemistry; 1997 Aug; 36(32):9941-9. PubMed ID: 9245428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic analysis of unfolding and dissociation in lactose repressor protein.
    Barry JK; Matthews KS
    Biochemistry; 1999 May; 38(20):6520-8. PubMed ID: 10350470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo backbone and sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure.
    Offredi F; Dubail F; Kischel P; Sarinski K; Stern AS; Van de Weerdt C; Hoch JC; Prosperi C; François JM; Mayo SL; Martial JA
    J Mol Biol; 2003 Jan; 325(1):163-74. PubMed ID: 12473459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of large peptide fragments derived from the N-terminal domain of the ribosomal protein L9: definition of the minimum folding motif and characterization of local electrostatic interactions.
    Horng JC; Moroz V; Rigotti DJ; Fairman R; Raleigh DP
    Biochemistry; 2002 Nov; 41(45):13360-9. PubMed ID: 12416980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation by cAMP-dependent protein kinase modulates the structural coupling between the transmembrane and cytosolic domains of phospholamban.
    Li J; Bigelow DJ; Squier TC
    Biochemistry; 2003 Sep; 42(36):10674-82. PubMed ID: 12962492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics of melittin tetramerization determined by circular dichroism and implications for protein folding.
    Wilcox W; Eisenberg D
    Protein Sci; 1992 May; 1(5):641-53. PubMed ID: 1304363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the role of alanine in the structure of the Lac repressor tetramerization domain, a ferritin-like Alacoil.
    Solan A; Ratia K; Fairman R
    J Mol Biol; 2002 Apr; 317(4):601-12. PubMed ID: 11955012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural cassette mutagenesis in a de novo designed protein: proof of a novel concept for examining protein folding and stability.
    Kwok SC; Tripet B; Man JH; Chana MS; Lavigne P; Mant CT; Hodges RS
    Biopolymers; 1998; 47(1):101-23. PubMed ID: 9692331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A De Novo Designed Coiled-Coil Peptide with a Reversible pH-Induced Oligomerization Switch.
    Lizatović R; Aurelius O; Stenström O; Drakenberg T; Akke M; Logan DT; André I
    Structure; 2016 Jun; 24(6):946-55. PubMed ID: 27161978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational analysis of a set of peptides corresponding to the entire primary sequence of the N-terminal domain of the ribosomal protein L9: evidence for stable native-like secondary structure in the unfolded state.
    Luisi DL; Wu WJ; Raleigh DP
    J Mol Biol; 1999 Mar; 287(2):395-407. PubMed ID: 10080901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of peptide design in four-, five-, and six-helix bundle template assembled synthetic protein molecules.
    Seo ES; Sherman JC
    Biopolymers; 2007; 88(5):774-9. PubMed ID: 17554752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of alpha-helix-forming peptides by gene engineering methods and their characterization by circular dichroism spectra measurements.
    Kojima S; Kuriki Y; Sato Y; Arisaka F; Kumagai I; Takahashi S; Miura K
    Biochim Biophys Acta; 1996 May; 1294(2):129-37. PubMed ID: 8645730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperative folding of a protein mini domain: the peripheral subunit-binding domain of the pyruvate dehydrogenase multienzyme complex.
    Spector S; Kuhlman B; Fairman R; Wong E; Boice JA; Raleigh DP
    J Mol Biol; 1998 Feb; 276(2):479-89. PubMed ID: 9512717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein destabilization by electrostatic repulsions in the two-stranded alpha-helical coiled-coil/leucine zipper.
    Kohn WD; Kay CM; Hodges RS
    Protein Sci; 1995 Feb; 4(2):237-50. PubMed ID: 7757012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.