These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 14596801)
1. Mechanical design of the first proximal Ig domain of human cardiac titin revealed by single molecule force spectroscopy. Li H; Fernandez JM J Mol Biol; 2003 Nov; 334(1):75-86. PubMed ID: 14596801 [TBL] [Abstract][Full Text] [Related]
2. Steered molecular dynamics studies of titin I1 domain unfolding. Gao M; Wilmanns M; Schulten K Biophys J; 2002 Dec; 83(6):3435-45. PubMed ID: 12496110 [TBL] [Abstract][Full Text] [Related]
3. Structural evidence for a possible role of reversible disulphide bridge formation in the elasticity of the muscle protein titin. Mayans O; Wuerges J; Canela S; Gautel M; Wilmanns M Structure; 2001 Apr; 9(4):331-40. PubMed ID: 11525170 [TBL] [Abstract][Full Text] [Related]
4. Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Improta S; Politou AS; Pastore A Structure; 1996 Mar; 4(3):323-37. PubMed ID: 8805538 [TBL] [Abstract][Full Text] [Related]
5. Mechanical stability and differentially conserved physical-chemical properties of titin Ig-domains. Garcia TI; Oberhauser AF; Braun W Proteins; 2009 May; 75(3):706-18. PubMed ID: 19003986 [TBL] [Abstract][Full Text] [Related]
6. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Lu H; Isralewitz B; Krammer A; Vogel V; Schulten K Biophys J; 1998 Aug; 75(2):662-71. PubMed ID: 9675168 [TBL] [Abstract][Full Text] [Related]
7. Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering. Fowler SB; Best RB; Toca Herrera JL; Rutherford TJ; Steward A; Paci E; Karplus M; Clarke J J Mol Biol; 2002 Sep; 322(4):841-9. PubMed ID: 12270718 [TBL] [Abstract][Full Text] [Related]
8. Mechanical unfolding of a titin Ig domain: structure of transition state revealed by combining atomic force microscopy, protein engineering and molecular dynamics simulations. Best RB; Fowler SB; Herrera JL; Steward A; Paci E; Clarke J J Mol Biol; 2003 Jul; 330(4):867-77. PubMed ID: 12850153 [TBL] [Abstract][Full Text] [Related]
9. Unfolding of titin domains studied by molecular dynamics simulations. Gao M; Lu H; Schulten K J Muscle Res Cell Motil; 2002; 23(5-6):513-21. PubMed ID: 12785101 [TBL] [Abstract][Full Text] [Related]
10. Towards a molecular understanding of the elasticity of titin. Linke WA; Ivemeyer M; Olivieri N; Kolmerer B; Rüegg JC; Labeit S J Mol Biol; 1996 Aug; 261(1):62-71. PubMed ID: 8760502 [TBL] [Abstract][Full Text] [Related]
11. Mechanically driven contour-length adjustment in rat cardiac titin's unique N2B sequence: titin is an adjustable spring. Helmes M; Trombitás K; Centner T; Kellermayer M; Labeit S; Linke WA; Granzier H Circ Res; 1999 Jun; 84(11):1339-52. PubMed ID: 10364572 [TBL] [Abstract][Full Text] [Related]
12. Computer modeling of force-induced titin domain unfolding. Lu H; Krammer A; Isralewitz B; Vogel V; Schulten K Adv Exp Med Biol; 2000; 481():143-60; discussion 161-2. PubMed ID: 10987071 [TBL] [Abstract][Full Text] [Related]
13. Single molecule force spectroscopy on titin implicates immunoglobulin domain stability as a cardiac disease mechanism. Anderson BR; Bogomolovas J; Labeit S; Granzier H J Biol Chem; 2013 Feb; 288(8):5303-15. PubMed ID: 23297410 [TBL] [Abstract][Full Text] [Related]
14. Molecular basis of passive stress relaxation in human soleus fibers: assessment of the role of immunoglobulin-like domain unfolding. Trombitás K; Wu Y; McNabb M; Greaser M; Kellermayer MS; Labeit S; Granzier H Biophys J; 2003 Nov; 85(5):3142-53. PubMed ID: 14581214 [TBL] [Abstract][Full Text] [Related]
15. Modulation of titin-based stiffness by disulfide bonding in the cardiac titin N2-B unique sequence. Grützner A; Garcia-Manyes S; Kötter S; Badilla CL; Fernandez JM; Linke WA Biophys J; 2009 Aug; 97(3):825-34. PubMed ID: 19651040 [TBL] [Abstract][Full Text] [Related]
16. Point mutations alter the mechanical stability of immunoglobulin modules. Li H; Carrion-Vazquez M; Oberhauser AF; Marszalek PE; Fernandez JM Nat Struct Biol; 2000 Dec; 7(12):1117-20. PubMed ID: 11101892 [TBL] [Abstract][Full Text] [Related]
17. Modeling AFM-induced PEVK extension and the reversible unfolding of Ig/FNIII domains in single and multiple titin molecules. Zhang B; Evans JS Biophys J; 2001 Feb; 80(2):597-605. PubMed ID: 11159428 [TBL] [Abstract][Full Text] [Related]
18. Contour length and refolding rate of a small protein controlled by engineered disulfide bonds. Ainavarapu SR; Brujic J; Huang HH; Wiita AP; Lu H; Li L; Walther KA; Carrion-Vazquez M; Li H; Fernandez JM Biophys J; 2007 Jan; 92(1):225-33. PubMed ID: 17028145 [TBL] [Abstract][Full Text] [Related]
19. Single molecule force spectroscopy of the cardiac titin N2B element: effects of the molecular chaperone alphaB-crystallin with disease-causing mutations. Zhu Y; Bogomolovas J; Labeit S; Granzier H J Biol Chem; 2009 May; 284(20):13914-13923. PubMed ID: 19282282 [TBL] [Abstract][Full Text] [Related]
20. Viscoelastic study of the mechanical unfolding of a protein by AFM. Kawakami M; Byrne K; Brockwell DJ; Radford SE; Smith DA Biophys J; 2006 Jul; 91(2):L16-8. PubMed ID: 16698787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]