These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 14596831)
1. Cellodextrin preparation by mixed-acid hydrolysis and chromatographic separation. Zhang YH; Lynd LR Anal Biochem; 2003 Nov; 322(2):225-32. PubMed ID: 14596831 [TBL] [Abstract][Full Text] [Related]
2. Fermentation of cellodextrins by cellulolytic and noncellulolytic rumen bacteria. Russell JB Appl Environ Microbiol; 1985 Mar; 49(3):572-6. PubMed ID: 3994365 [TBL] [Abstract][Full Text] [Related]
3. Preparation of cellodextrins and isolation of oligomeric side components and their characterization. Schmid G; Biselli M; Wandrey C Anal Biochem; 1988 Dec; 175(2):573-83. PubMed ID: 3239782 [TBL] [Abstract][Full Text] [Related]
4. Biosynthesis of radiolabeled cellodextrins by the Clostridium thermocellum cellobiose and cellodextrin phosphorylases for measurement of intracellular sugars. Zhang YH; Lynd LR Appl Microbiol Biotechnol; 2006 Mar; 70(1):123-9. PubMed ID: 16402169 [TBL] [Abstract][Full Text] [Related]
5. Analysis of underivatized cellodextrin oligosaccharides by capillary electrophoresis with direct photochemically induced UV-detection. Alinat E; Jemmali S; Delaunay N; Archer X; Gareil P Electrophoresis; 2015 Jul; 36(14):1555-63. PubMed ID: 25820340 [TBL] [Abstract][Full Text] [Related]
6. Cellulose and cellodextrin utilization by the cellulolytic bacterium Cytophaga hutchisonii. Zhu Y; Li H; Zhou H; Chen G; Liu W Bioresour Technol; 2010 Aug; 101(16):6432-7. PubMed ID: 20362433 [TBL] [Abstract][Full Text] [Related]
7. Product solubility control in cellooligosaccharide production by coupled cellobiose and cellodextrin phosphorylase. Zhong C; Luley-Goedl C; Nidetzky B Biotechnol Bioeng; 2019 Sep; 116(9):2146-2155. PubMed ID: 31062868 [TBL] [Abstract][Full Text] [Related]
8. The action on cellulose and its derivatives of a purified 1,4-beta-glucanase from Trichoderma koningii. Halliwell G; Vincent R Biochem J; 1981 Nov; 199(2):409-17. PubMed ID: 7200359 [TBL] [Abstract][Full Text] [Related]
9. Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Zhang YH; Lynd LR Biomacromolecules; 2005; 6(3):1510-5. PubMed ID: 15877372 [TBL] [Abstract][Full Text] [Related]
10. Fractionation of starch hydrolysates into dextrins with narrow molecular mass distribution and their detection by high-performance anion-exchange chromatography with pulsed amperometric detection. Gelders GG; Bijnens L; Loosveld AM; Vidts A; Delcour JA J Chromatogr A; 2003 Apr; 992(1-2):75-83. PubMed ID: 12735464 [TBL] [Abstract][Full Text] [Related]
11. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid. Kazami N; Sakaguchi M; Mizutani D; Masuda T; Wakita S; Oyama F; Kawakita M; Sugahara Y Carbohydr Polym; 2015 Nov; 132():304-10. PubMed ID: 26256353 [TBL] [Abstract][Full Text] [Related]
12. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum. Nakai H; Hachem MA; Petersen BO; Westphal Y; Mannerstedt K; Baumann MJ; Dilokpimol A; Schols HA; Duus JØ; Svensson B Biochimie; 2010 Dec; 92(12):1818-26. PubMed ID: 20678539 [TBL] [Abstract][Full Text] [Related]
13. An automated method for the quasi-continuous analysis of degradation and transfer products during the enzymatic hydrolysis of oligosaccharides. Schmid G; Wandrey C Anal Biochem; 1986 Feb; 153(1):144-50. PubMed ID: 3083715 [TBL] [Abstract][Full Text] [Related]
14. Biochemical properties of GH94 cellodextrin phosphorylase THA_1941 from a thermophilic eubacterium Thermosipho africanus TCF52B with cellobiose phosphorylase activity. Wu Y; Mao G; Fan H; Song A; Zhang YP; Chen H Sci Rep; 2017 Jul; 7(1):4849. PubMed ID: 28687766 [TBL] [Abstract][Full Text] [Related]
15. NMR study of cellulose and wheat straw degradation by Ruminococcus albus 20. Matulova M; Nouaille R; Capek P; Péan M; Delort AM; Forano E FEBS J; 2008 Jul; 275(13):3503-11. PubMed ID: 18513327 [TBL] [Abstract][Full Text] [Related]
16. MALDI-TOF MS analysis of cellodextrins and xylo-oligosaccharides produced by hindgut homogenates of Reticulitermes santonensis. Brasseur C; Bauwens J; Tarayre C; Mattéotti C; Thonart P; Destain J; Francis F; Haubruge E; Portetelle D; Vandenbol M; Focant JF; De Pauw E Molecules; 2014 Apr; 19(4):4578-94. PubMed ID: 24731986 [TBL] [Abstract][Full Text] [Related]
17. Cellodextrin utilization by bifidobacterium breve UCC2003. Pokusaeva K; O'Connell-Motherway M; Zomer A; Macsharry J; Fitzgerald GF; van Sinderen D Appl Environ Microbiol; 2011 Mar; 77(5):1681-90. PubMed ID: 21216899 [TBL] [Abstract][Full Text] [Related]
18. Fermentation and aerobic metabolism of cellodextrins by yeasts. Freer SN Appl Environ Microbiol; 1991 Mar; 57(3):655-9. PubMed ID: 2039228 [TBL] [Abstract][Full Text] [Related]
19. Characterization of Ruminococcus albus cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group. Sawano T; Saburi W; Hamura K; Matsui H; Mori H FEBS J; 2013 Sep; 280(18):4463-73. PubMed ID: 23802549 [TBL] [Abstract][Full Text] [Related]
20. Three-Enzyme Phosphorylase Cascade for Integrated Production of Short-Chain Cellodextrins. Zhong C; Nidetzky B Biotechnol J; 2020 Mar; 15(3):e1900349. PubMed ID: 31677345 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]