These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 14596887)

  • 1. The role of electrical signaling via gap junctions in the generation of fast network oscillations.
    LeBeau FE; Traub RD; Monyer H; Whittington MA; Buhl EH
    Brain Res Bull; 2003 Nov; 62(1):3-13. PubMed ID: 14596887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice.
    Hormuzdi SG; Pais I; LeBeau FE; Towers SK; Rozov A; Buhl EH; Whittington MA; Monyer H
    Neuron; 2001 Aug; 31(3):487-95. PubMed ID: 11516404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axonal gap junctions between principal neurons: a novel source of network oscillations, and perhaps epileptogenesis.
    Traub RD; Draguhn A; Whittington MA; Baldeweg T; Bibbig A; Buhl EH; Schmitz D
    Rev Neurosci; 2002; 13(1):1-30. PubMed ID: 12013024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical coupling and neuronal synchronization in the Mammalian brain.
    Bennett MV; Zukin RS
    Neuron; 2004 Feb; 41(4):495-511. PubMed ID: 14980200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sharp wave-like activity in the hippocampus in vitro in mice lacking the gap junction protein connexin 36.
    Pais I; Hormuzdi SG; Monyer H; Traub RD; Wood IC; Buhl EH; Whittington MA; LeBeau FE
    J Neurophysiol; 2003 Apr; 89(4):2046-54. PubMed ID: 12686578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The contribution of electrical synapses to field potential oscillations in the hippocampal formation.
    Posłuszny A
    Front Neural Circuits; 2014; 8():32. PubMed ID: 24772068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A possible role for gap junctions in generation of very fast EEG oscillations preceding the onset of, and perhaps initiating, seizures.
    Traub RD; Whittington MA; Buhl EH; LeBeau FE; Bibbig A; Boyd S; Cross H; Baldeweg T
    Epilepsia; 2001 Feb; 42(2):153-70. PubMed ID: 11240585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of gap junctions on the firing patterns and synchrony for different external inputs in the striatal fast-spiking neuron network.
    Zhang M; Zhao Z; He P; Wang J
    Biomed Mater Eng; 2014; 24(6):2635-44. PubMed ID: 25226967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical coupling between hippocampal neurons: contrasting roles of principal cell gap junctions and interneuron gap junctions.
    Traub RD; Whittington MA; Gutiérrez R; Draguhn A
    Cell Tissue Res; 2018 Sep; 373(3):671-691. PubMed ID: 30112572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal Glutamatergic Network Electrically Wired with Silent But Activatable Gap Junctions.
    Ixmatlahua DJ; Vizcarra B; Gómez-Lira G; Romero-Maldonado I; Ortiz F; Rojas-Piloni G; Gutiérrez R
    J Neurosci; 2020 Jun; 40(24):4661-4672. PubMed ID: 32393538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonspecific effects of the gap junction blocker mefloquine on fast hippocampal network oscillations in the adult rat in vitro.
    Behrens CJ; Ul Haq R; Liotta A; Anderson ML; Heinemann U
    Neuroscience; 2011 Sep; 192():11-9. PubMed ID: 21763755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions.
    Traub RD; Schmitz D; Jefferys JG; Draguhn A
    Neuroscience; 1999; 92(2):407-26. PubMed ID: 10408594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-organized synchronous oscillations in a network of excitable cells coupled by gap junctions.
    Lewis TJ; Rinzel J
    Network; 2000 Nov; 11(4):299-320. PubMed ID: 11128169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of high-frequency network oscillations (ripples) and pathological network discharges in hippocampal slices from connexin 36-deficient mice.
    Maier N; Güldenagel M; Söhl G; Siegmund H; Willecke K; Draguhn A
    J Physiol; 2002 Jun; 541(Pt 2):521-8. PubMed ID: 12042356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gap junction plasticity as a mechanism to regulate network-wide oscillations.
    Pernelle G; Nicola W; Clopath C
    PLoS Comput Biol; 2018 Mar; 14(3):e1006025. PubMed ID: 29529034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices.
    Maier N; Nimmrich V; Draguhn A
    J Physiol; 2003 Aug; 550(Pt 3):873-87. PubMed ID: 12807984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of spontaneous and self-sustained oscillations in networks connected through axo-axonal gap junctions.
    Maex R; De Schutter E
    Eur J Neurosci; 2007 Jun; 25(11):3347-58. PubMed ID: 17553003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distal gap junctions and active dendrites can tune network dynamics.
    Saraga F; Ng L; Skinner FK
    J Neurophysiol; 2006 Mar; 95(3):1669-82. PubMed ID: 16339003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous electrical oscillations emerge from a coupled network: a study of the inferior olive using lentiviral knockdown of connexin36.
    Placantonakis DG; Bukovsky AA; Aicher SA; Kiem HP; Welsh JP
    J Neurosci; 2006 May; 26(19):5008-16. PubMed ID: 16687492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks.
    Hormuzdi SG; Filippov MA; Mitropoulou G; Monyer H; Bruzzone R
    Biochim Biophys Acta; 2004 Mar; 1662(1-2):113-37. PubMed ID: 15033583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.