BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 14597122)

  • 21. Tunable Ionization Modes of a Flowing Atmospheric-Pressure Afterglow (FAPA) Ambient Ionization Source.
    Badal SP; Michalak SD; Chan GC; You Y; Shelley JT
    Anal Chem; 2016 Apr; 88(7):3494-503. PubMed ID: 26916720
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent developments in the ion/ion chemistry of high-mass multiply charged ions.
    Pitteri SJ; McLuckey SA
    Mass Spectrom Rev; 2005; 24(6):931-58. PubMed ID: 15706594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elucidation of reaction mechanisms responsible for afterglow and reagent-ion formation in the low-temperature plasma probe ambient ionization source.
    Chan GC; Shelley JT; Wiley JS; Engelhard C; Jackson AU; Cooks RG; Hieftje GM
    Anal Chem; 2011 May; 83(10):3675-86. PubMed ID: 21526754
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoemission ambient pressure ionization (PAPI) with an ultraviolet light emitting diode and detection of organic compounds.
    Short LC; Ewing RG; Barinaga CJ
    Rapid Commun Mass Spectrom; 2011 Oct; 25(19):2888-96. PubMed ID: 21913267
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Capillary atmospheric pressure electron capture ionization (cAPECI): a highly efficient ionization method for nitroaromatic compounds.
    Derpmann V; Mueller D; Bejan I; Sonderfeld H; Wilberscheid S; Koppmann R; Brockmann KJ; Benter T
    J Am Soc Mass Spectrom; 2014 Mar; 25(3):329-42. PubMed ID: 24399666
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atmospheric pressure laser desorption/chemical ionization mass spectrometry: a new ionization method based on existing themes.
    Coon JJ; McHale KJ; Harrison WW
    Rapid Commun Mass Spectrom; 2002; 16(7):681-5. PubMed ID: 11921247
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A membrane introduction mass spectrometer utilizing ion-molecule reactions for the on-line speciation and quantitation of volatile organic molecules.
    Davey NG; Bell RJ; Krogh ET; Gill CG
    Rapid Commun Mass Spectrom; 2015 Dec; 29(23):2187-94. PubMed ID: 26522309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study of discontinuous atmospheric pressure interfaces for mass spectrometry instrumentation development.
    Xu W; Charipar N; Kirleis MA; Xia Y; Ouyang Z
    Anal Chem; 2010 Aug; 82(15):6584-92. PubMed ID: 20700912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual-source mass spectrometer with MALDI-LIT-ESI configuration.
    Smith SA; Blake TA; Ifa DR; Cooks RG; Ouyang Z
    J Proteome Res; 2007 Feb; 6(2):837-45. PubMed ID: 17269740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study of Discontinuous Atmospheric Pressure Interfaces for Mass Spectrometry Instrumentation Development.
    Xu W; Charipar N; Kirleis MA; Xia Y; Ouyang Z
    Anal Chem; 2010 Aug; 82(15):6584-6592. PubMed ID: 20698581
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A mechanism study of positive ionization processes in flowing atmospheric-pressure afterglow (FAPA) ambient ion source with controlled plasma and ambient conditions.
    Zhao Z; Pu J; Dai J; He F; Ren B; Zhang C; Duan Y
    Talanta; 2019 Dec; 205():120090. PubMed ID: 31450470
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dust particle radial confinement in a dc glow discharge.
    Sukhinin GI; Fedoseev AV; Antipov SN; Petrov OF; Fortov VE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013101. PubMed ID: 23410440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intermediate detection in real time using reactive surface desorption dielectric-barrier discharge ionization mass spectrometry.
    Zhang H; Yu K; Li N; He J; You H; Jiang J
    J Mass Spectrom; 2018 Jun; 53(6):511-517. PubMed ID: 29520925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparison of the ion chemistry for mono-substituted toluenes and anilines by three methods of atmospheric pressure ionization with ion mobility spectrometry.
    Borsdorf H; Neitsch K; Eiceman GA; Stone JA
    Talanta; 2009 Jun; 78(4-5):1464-75. PubMed ID: 19362218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transmission geometry laser desorption atmospheric pressure photochemical ionization mass spectrometry for analysis of complex organic mixtures.
    Nyadong L; Mapolelo MM; Hendrickson CL; Rodgers RP; Marshall AG
    Anal Chem; 2014 Nov; 86(22):11151-8. PubMed ID: 25347814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gas sampling glow discharge: a versatile ionization source for gas chromatography time-of-flight mass spectrometry.
    Guzowski JP; Hieftje GM
    Anal Chem; 2000 Aug; 72(16):3812-20. PubMed ID: 10959967
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-radioactive electron source with nanosecond pulse modulation for atmospheric pressure chemical ionization.
    Bunert E; Berger M; Kirk AT; Zimmermann S
    Rev Sci Instrum; 2019 Nov; 90(11):113306. PubMed ID: 31779458
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of reactant and analyte ions for ⁶³Nickel, corona discharge, and secondary electrospray ionization sources with ion mobility-mass spectrometry.
    Crawford CL; Hill HH
    Talanta; 2013 Mar; 107():225-32. PubMed ID: 23598216
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative aspects of and ionization mechanisms in positive-ion atmospheric pressure chemical ionization mass spectrometry.
    Herrera LC; Grossert JS; Ramaley L
    J Am Soc Mass Spectrom; 2008 Dec; 19(12):1926-41. PubMed ID: 18845448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct quantitative analysis of organic compounds in the gas and particle phase using a modified atmospheric pressure chemical ionization source in combination with ion trap mass spectrometry.
    Warscheid B; Kückelmann U; Hoffmann T
    Anal Chem; 2003 Mar; 75(6):1410-7. PubMed ID: 12659203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.