These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 14597428)

  • 1. Response of Douglas-fir seedlings to a brief pulse of 15N-labeled nutrients.
    Warren CR; Livingston NJ; Turpin DH
    Tree Physiol; 2003 Dec; 23(17):1193-200. PubMed ID: 14597428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosynthetic responses and N allocation in Douglas-fir needles following a brief pulse of nutrients.
    Warren CR; Livingston NJ; Turpin DH
    Tree Physiol; 2004 Jun; 24(6):601-8. PubMed ID: 15059760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomass and nutrient allocation in Douglas-fir and amabilis fir seedlings: influence of growth rate and nutrition.
    Hawkins BJ; Henry G; Kiiskila SB
    Tree Physiol; 1998 Dec; 18(12):803-810. PubMed ID: 12651401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Root growth and water use efficiency of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings.
    Smit J; Van Den Driessche R
    Tree Physiol; 1992 Dec; 11(4):401-10. PubMed ID: 14969945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutrition and bud removal affect biomass and nutrient allocation in Douglas-fir and western red cedar.
    Hawkins BJ; Henry G
    Tree Physiol; 1999 Mar; 19(3):197-203. PubMed ID: 12651583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of growth medium, nutrients, water, and aeration on mycorrhization and biomass allocation of greenhouse-grown interior Douglas-fir seedlings.
    Kazantseva O; Bingham M; Simard SW; Berch SM
    Mycorrhiza; 2009 Nov; 20(1):51-66. PubMed ID: 19572155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Family variation in nutritional and growth traits in Douglas-fir seedlings.
    Hawkins BJ
    Tree Physiol; 2007 Jun; 27(6):911-9. PubMed ID: 17331909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactive effects of elevated CO2 concentration and nitrogen supply on partitioning of newly fixed 13C and 15N between shoot and roots of pedunculate oak seedlings (Quercus robur).
    Maillard P; Guehl JM; Muller JF; Gross P
    Tree Physiol; 2001 Feb; 21(2-3):163-72. PubMed ID: 11303647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foliar nitrogen concentrations and natural abundance of (15)N suggest nitrogen allocation patterns of Douglas-fir and mycorrhizal fungi during development in elevated carbon dioxide concentration and temperature.
    Hobbie EA; Olszyk DM; Rygiewicz PT; Tingey DT; Johnson MG
    Tree Physiol; 2001 Sep; 21(15):1113-22. PubMed ID: 11581018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomass and nutrient allocation in Douglas-fir and amabilis fir seedlings: influence of growth rate and temperature.
    Hawkins BJ; Kiiskila SB; Henry G
    Tree Physiol; 1999 Jan; 19(1):59-63. PubMed ID: 12651333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tree proximity, soil pathways and common mycorrhizal networks: their influence on the utilization of redistributed water by understory seedlings.
    Schoonmaker AL; Teste FP; Simard SW; Guy RD
    Oecologia; 2007 Dec; 154(3):455-66. PubMed ID: 17885766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of Picea, Pinus and Pseudotsuga roots to heterogeneous nutrient distribution in soil.
    George E; Seith B; Schaeffer C; Marschner H
    Tree Physiol; 1997 Jan; 17(1):39-45. PubMed ID: 14759912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosynthesis-nitrogen relationships: interpretation of different patterns between Pseudotsuga menziesii and Populus x euroamericana in a mini-stand experiment.
    Ripullone F; Grassi G; Lauteri M; Borghetti M
    Tree Physiol; 2003 Feb; 23(2):137-44. PubMed ID: 12533308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen mobilization, nitrogen uptake and growth of cuttings obtained from poplar stock plants grown in different N regimes and sprayed with urea in autumn.
    Dong S; Cheng L; Scagel CF; Fuchigami LH
    Tree Physiol; 2004 Mar; 24(3):355-9. PubMed ID: 14704145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forest encroachment into a Californian grassland: examining the simultaneous effects of facilitation and competition on tree seedling recruitment.
    Kennedy PG; Sousa WP
    Oecologia; 2006 Jun; 148(3):464-74. PubMed ID: 16496180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mycorrhizal networks and distance from mature trees alter patterns of competition and facilitation in dry Douglas-fir forests.
    Teste FP; Simard SW
    Oecologia; 2008 Nov; 158(2):193-203. PubMed ID: 18781333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced tolerance of photosynthesis to high-light and drought stress in Pseudotsuga menziesii seedlings grown in ultraviolet-B radiation.
    Poulson ME; Donahue RA; Konvalinka J; Boeger MR
    Tree Physiol; 2002 Aug; 22(12):829-38. PubMed ID: 12184972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer.
    Teste FP; Simard SW; Durall DM; Guy RD; Jones MD; Schoonmaker AL
    Ecology; 2009 Oct; 90(10):2808-22. PubMed ID: 19886489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive significance of intermittent shoot growth in Douglas-fir seedlings.
    Kaya Z; Adams WT; Campbell RK
    Tree Physiol; 1994 Nov; 14(11):1277-89. PubMed ID: 14967617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Needle anatomy changes with increasing tree age in Douglas-fir.
    Apple M; Tiekotter K; Snow M; Young J; Soeldner A; Phillips D; Tingey D; Bond BJ
    Tree Physiol; 2002 Feb; 22(2-3):129-36. PubMed ID: 11830409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.