These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 14597652)

  • 1. A biophysical approach to transcription factor binding site discovery.
    Djordjevic M; Sengupta AM; Shraiman BI
    Genome Res; 2003 Nov; 13(11):2381-90. PubMed ID: 14597652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating genomic data to predict transcription factor binding.
    Holloway DT; Kon M; DeLisi C
    Genome Inform; 2005; 16(1):83-94. PubMed ID: 16362910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MAPPER: a search engine for the computational identification of putative transcription factor binding sites in multiple genomes.
    Marinescu VD; Kohane IS; Riva A
    BMC Bioinformatics; 2005 Mar; 6():79. PubMed ID: 15799782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A motif co-occurrence approach for genome-wide prediction of transcription-factor-binding sites in Escherichia coli.
    Bulyk ML; McGuire AM; Masuda N; Church GM
    Genome Res; 2004 Feb; 14(2):201-8. PubMed ID: 14762058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular analysis of the regulation of csiD, a carbon starvation-inducible gene in Escherichia coli that is exclusively dependent on sigma s and requires activation by cAMP-CRP.
    Marschall C; Labrousse V; Kreimer M; Weichart D; Kolb A; Hengge-Aronis R
    J Mol Biol; 1998 Feb; 276(2):339-53. PubMed ID: 9512707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome.
    Robison K; McGuire AM; Church GM
    J Mol Biol; 1998 Nov; 284(2):241-54. PubMed ID: 9813115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constrained binding site diversity within families of transcription factors enhances pattern discovery bioinformatics.
    Sandelin A; Wasserman WW
    J Mol Biol; 2004 Apr; 338(2):207-15. PubMed ID: 15066426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tandem machine learning for the identification of genes regulated by transcription factors.
    Dinakarpandian D; Raheja V; Mehta S; Schuetz EG; Rogan PK
    BMC Bioinformatics; 2005 Aug; 6():204. PubMed ID: 16115317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-assisted identification of cell cycle-related genes: new targets for E2F transcription factors.
    Kel AE; Kel-Margoulis OV; Farnham PJ; Bartley SM; Wingender E; Zhang MQ
    J Mol Biol; 2001 May; 309(1):99-120. PubMed ID: 11491305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using sequence-specific chemical and structural properties of DNA to predict transcription factor binding sites.
    Bauer AL; Hlavacek WS; Unkefer PJ; Mu F
    PLoS Comput Biol; 2010 Nov; 6(11):e1001007. PubMed ID: 21124945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of decoys on the noise and dynamics of gene expression.
    Burger A; Walczak AM; Wolynes PG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041920. PubMed ID: 23214628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining experts in order to identify binding sites in yeast and mouse genomic data.
    Robinson M; González Castellano C; Rezwan F; Adams R; Davey N; Rust A; Sun Y
    Neural Netw; 2008 Aug; 21(6):856-61. PubMed ID: 18710795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription factor binding sites detection by using alignment-based approach.
    Mahdevar G; Sadeghi M; Nowzari-Dalini A
    J Theor Biol; 2012 Jul; 304():96-102. PubMed ID: 22504445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio identification of putative human transcription factor binding sites by comparative genomics.
    Corà D; Herrmann C; Dieterich C; Di Cunto F; Provero P; Caselle M
    BMC Bioinformatics; 2005 May; 6():110. PubMed ID: 15865625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors.
    Meng X; Brodsky MH; Wolfe SA
    Nat Biotechnol; 2005 Aug; 23(8):988-94. PubMed ID: 16041365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny.
    Siddharthan R; Siggia ED; van Nimwegen E
    PLoS Comput Biol; 2005 Dec; 1(7):e67. PubMed ID: 16477324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling transcription factor binding sites with Gibbs Sampling and Minimum Description Length encoding.
    Schug J; Overton GC
    Proc Int Conf Intell Syst Mol Biol; 1997; 5():268-71. PubMed ID: 9322048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BSS-HMM3s: an improved HMM method for identifying transcription factor binding sites.
    Xu D; Liu HJ; Wang YF
    DNA Seq; 2005 Dec; 16(6):403-11. PubMed ID: 16287619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Computational predictions of transcription factor binding sites].
    Kawaji H
    Tanpakushitsu Kakusan Koso; 2004 Dec; 49(17 Suppl):2877-81. PubMed ID: 15669270
    [No Abstract]   [Full Text] [Related]  

  • 20. Regulatory motif finding by logic regression.
    Keles S; van der Laan MJ; Vulpe C
    Bioinformatics; 2004 Nov; 20(16):2799-811. PubMed ID: 15166027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.