These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 14597654)

  • 21. Life's attractors : understanding developmental systems through reverse engineering and in silico evolution.
    Jaeger J; Crombach A
    Adv Exp Med Biol; 2012; 751():93-119. PubMed ID: 22821455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stochastic Boolean networks: an efficient approach to modeling gene regulatory networks.
    Liang J; Han J
    BMC Syst Biol; 2012 Aug; 6():113. PubMed ID: 22929591
    [TBL] [Abstract][Full Text] [Related]  

  • 23. iRegulon: from a gene list to a gene regulatory network using large motif and track collections.
    Janky R; Verfaillie A; Imrichová H; Van de Sande B; Standaert L; Christiaens V; Hulselmans G; Herten K; Naval Sanchez M; Potier D; Svetlichnyy D; Kalender Atak Z; Fiers M; Marine JC; Aerts S
    PLoS Comput Biol; 2014 Jul; 10(7):e1003731. PubMed ID: 25058159
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Parametric sensitivity analysis for biochemical reaction networks based on pathwise information theory.
    Pantazis Y; Katsoulakis MA; Vlachos DG
    BMC Bioinformatics; 2013 Oct; 14():311. PubMed ID: 24148216
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A generalized framework for network component analysis.
    Boscolo R; Sabatti C; Liao JC; Roychowdhury VP
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(4):289-301. PubMed ID: 17044167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the spontaneous stochastic dynamics of a single gene: complexity of the molecular interplay at the promoter.
    Coulon A; Gandrillon O; Beslon G
    BMC Syst Biol; 2010 Jan; 4():2. PubMed ID: 20064204
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcription regulatory networks in Caenorhabditis elegans inferred through reverse-engineering of gene expression profiles constitute biological hypotheses for metazoan development.
    Vermeirssen V; Joshi A; Michoel T; Bonnet E; Casneuf T; Van de Peer Y
    Mol Biosyst; 2009 Dec; 5(12):1817-30. PubMed ID: 19763340
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reconstructing pathways in large genetic networks from genetic perturbations.
    Wagner A
    J Comput Biol; 2004; 11(1):53-60. PubMed ID: 15072688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reverse engineering genetic networks using nonlinear saturation kinetics.
    Kizhakkethil Youseph AS; Chetty M; Karmakar G
    Biosystems; 2019 Aug; 182():30-41. PubMed ID: 31185246
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stochastic and delayed stochastic models of gene expression and regulation.
    Ribeiro AS
    Math Biosci; 2010 Jan; 223(1):1-11. PubMed ID: 19883665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gene perturbation and intervention in context-sensitive stochastic Boolean networks.
    Zhu P; Liang J; Han J
    BMC Syst Biol; 2014 May; 8():60. PubMed ID: 24886608
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stochastic modeling and numerical simulation of gene regulatory networks with protein bursting.
    Pájaro M; Alonso AA; Otero-Muras I; Vázquez C
    J Theor Biol; 2017 May; 421():51-70. PubMed ID: 28341132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transient dynamics of reduced-order models of genetic regulatory networks.
    Pal R; Bhattacharya S
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1230-44. PubMed ID: 22411891
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A benchmark for methods in reverse engineering and model discrimination: problem formulation and solutions.
    Kremling A; Fischer S; Gadkar K; Doyle FJ; Sauter T; Bullinger E; Allgöwer F; Gilles ED
    Genome Res; 2004 Sep; 14(9):1773-85. PubMed ID: 15342560
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-modality in gene regulatory networks with slow promoter kinetics.
    Ali Al-Radhawi M; Del Vecchio D; Sontag ED
    PLoS Comput Biol; 2019 Feb; 15(2):e1006784. PubMed ID: 30779734
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic design of digital synthetic gene circuits.
    Marchisio MA; Stelling J
    PLoS Comput Biol; 2011 Feb; 7(2):e1001083. PubMed ID: 21399700
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time delay induced transition of gene switch and stochastic resonance in a genetic transcriptional regulatory model.
    Wang C; Yi M; Yang K; Yang L
    BMC Syst Biol; 2012; 6 Suppl 1(Suppl 1):S9. PubMed ID: 23046840
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studying genetic regulatory networks at the molecular level: delayed reaction stochastic models.
    Zhu R; Ribeiro AS; Salahub D; Kauffman SA
    J Theor Biol; 2007 Jun; 246(4):725-45. PubMed ID: 17350653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Statistical Approach Reveals Designs for the Most Robust Stochastic Gene Oscillators.
    Woods ML; Leon M; Perez-Carrasco R; Barnes CP
    ACS Synth Biol; 2016 Jun; 5(6):459-70. PubMed ID: 26835539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A statistical method for constructing transcriptional regulatory networks using gene expression and sequence data.
    Xing B; van der Laan MJ
    J Comput Biol; 2005 Mar; 12(2):229-46. PubMed ID: 15767778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.