These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 14598119)

  • 41. Electrically-driven Yagi-Uda antennas for light.
    Kullock R; Ochs M; Grimm P; Emmerling M; Hecht B
    Nat Commun; 2020 Jan; 11(1):115. PubMed ID: 31913288
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Empirical and theoretical dosimetry in support of whole body radio frequency (RF) exposure in seated human volunteers at 220 MHz.
    Allen SJ; Adair ER; Mylacraine KS; Hurt W; Ziriax J
    Bioelectromagnetics; 2005 Sep; 26(6):440-7. PubMed ID: 15931686
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antenna modeling considerations for accurate SAR calculations in human phantoms in close proximity to GSM cellular base station antennas.
    van Wyk MJ; Bingle M; Meyer FJ
    Bioelectromagnetics; 2005 Sep; 26(6):502-9. PubMed ID: 15931680
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Current status of the total artificial heart.
    Gray NA; Selzman CH
    Am Heart J; 2006 Jul; 152(1):4-10. PubMed ID: 16824826
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of bioactivity between GSM 900 MHz and DCS 1800 MHz mobile telephony radiation.
    Panagopoulos DJ; Chavdoula ED; Karabarbounis A; Margaritis LH
    Electromagn Biol Med; 2007; 26(1):33-44. PubMed ID: 17454081
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Micropower circuits for bidirectional wireless telemetry in neural recording applications.
    Neihart NM; Harrison RR
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1950-9. PubMed ID: 16285399
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The penetration characteristic of radio wave frequencies from oral cavities.
    Watanabe T; Kobayashi K; Nagao M
    Front Med Biol Eng; 1999; 9(1):1-7. PubMed ID: 10354906
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An inductive power link for a wireless endoscope.
    Lenaerts B; Puers R
    Biosens Bioelectron; 2007 Feb; 22(7):1390-5. PubMed ID: 16904885
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Innovative Free-range Resonant Electrical Energy Delivery system (FREE-D System) for a ventricular assist device using wireless power.
    Waters BH; Smith JR; Bonde P
    ASAIO J; 2014; 60(1):31-7. PubMed ID: 24299972
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Sanitary-protective and limitation areas for antennae of the decameter range].
    Dumanskiĭ IuD; Spodobaev IuM; Bitkin SV; Romanov VA; Serdiuk EA
    Gig Sanit; 1990 Jul; (7):53-6. PubMed ID: 2227508
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electromagnetic exposure compliance estimation using narrowband directional measurements.
    Stratakis D; Miaoudakis A; Xenos T; Zacharopoulos V
    Radiat Prot Dosimetry; 2008; 130(3):331-6. PubMed ID: 18252853
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A new hermetic antenna for wireless transmission systems of implantable medical devices.
    Marcelli E; Scalambra F; Cercenelli L; Plicchi G
    Med Eng Phys; 2007 Jan; 29(1):140-7. PubMed ID: 16504564
    [TBL] [Abstract][Full Text] [Related]  

  • 53. First human demonstration of cardiac stimulation with transcutaneous ultrasound energy delivery: implications for wireless pacing with implantable devices.
    Lee KL; Lau CP; Tse HF; Echt DS; Heaven D; Smith W; Hood M
    J Am Coll Cardiol; 2007 Aug; 50(9):877-83. PubMed ID: 17719475
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimal wide-area monitoring and nonlinear adaptive coordinating neurocontrol of a power system with wind power integration and multiple FACTS devices.
    Qiao W; Venayagamoorthy GK; Harley RG
    Neural Netw; 2008; 21(2-3):466-75. PubMed ID: 18206349
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recent progress on transcutaneous energy transfer for total artificial heart systems.
    Puers R; Vandevoorde G
    Artif Organs; 2001 May; 25(5):400-5. PubMed ID: 11403672
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A self-oscillating detuning-insensitive class-E transmitter for implantable microsystems.
    Ziaie B; Rose SC; Nardin MD; Najafi K
    IEEE Trans Biomed Eng; 2001 Mar; 48(3):397-400. PubMed ID: 11327509
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis.
    Chader GJ; Weiland J; Humayun MS
    Prog Brain Res; 2009; 175():317-32. PubMed ID: 19660665
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wide Dynamic Range, Angle-Sensing, Long-Wave Infrared Detector Using Nano-Antenna Arrays.
    Mohammadi E; Ghaffari M; Behdad N
    Sci Rep; 2020 Feb; 10(1):2488. PubMed ID: 32051545
    [TBL] [Abstract][Full Text] [Related]  

  • 59. State-of-the-art and clinically applied pneumatic artificial hearts.
    Olsen DB; Taenaka Y
    Crit Care Clin; 1986 Apr; 2(2):195-207. PubMed ID: 3331310
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In vivo demonstration of ultrasound power delivery to charge implanted medical devices via acute and survival porcine studies.
    Radziemski L; Makin IR
    Ultrasonics; 2016 Jan; 64():1-9. PubMed ID: 26243566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.