These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 14598388)
21. The Fifth Transmembrane Segment of Cystic Fibrosis Transmembrane Conductance Regulator Contributes to Its Anion Permeation Pathway. Zhang J; Hwang TC Biochemistry; 2015 Jun; 54(24):3839-50. PubMed ID: 26024338 [TBL] [Abstract][Full Text] [Related]
22. Location of a permeant anion binding site in the cystic fibrosis transmembrane conductance regulator chloride channel pore. Rubaiy HN; Linsdell P J Physiol Sci; 2015 May; 65(3):233-41. PubMed ID: 25673337 [TBL] [Abstract][Full Text] [Related]
23. CFTR: Ligand exchange between a permeant anion ([Au(CN)2]-) and an engineered cysteine (T338C) blocks the pore. Serrano JR; Liu X; Borg ER; Alexander CS; Shaw CF; Dawson DC Biophys J; 2006 Sep; 91(5):1737-48. PubMed ID: 16766608 [TBL] [Abstract][Full Text] [Related]
24. Interactions between impermeant blocking ions in the cystic fibrosis transmembrane conductance regulator chloride channel pore: evidence for anion-induced conformational changes. Ge N; Linsdell P J Membr Biol; 2006 Mar; 210(1):31-42. PubMed ID: 16794779 [TBL] [Abstract][Full Text] [Related]
25. Stable knockdown of CFTR establishes a role for the channel in P2Y receptor-stimulated anion secretion. Palmer ML; Lee SY; Carlson D; Fahrenkrug S; O'Grady SM J Cell Physiol; 2006 Mar; 206(3):759-70. PubMed ID: 16245306 [TBL] [Abstract][Full Text] [Related]
26. Cystic fibrosis transmembrane conductance regulator: a molecular model defines the architecture of the anion conduction path and locates a "bottleneck" in the pore. Norimatsu Y; Ivetac A; Alexander C; Kirkham J; O'Donnell N; Dawson DC; Sansom MS Biochemistry; 2012 Mar; 51(11):2199-212. PubMed ID: 22352759 [TBL] [Abstract][Full Text] [Related]
27. State-dependent access of anions to the cystic fibrosis transmembrane conductance regulator chloride channel pore. Fatehi M; Linsdell P J Biol Chem; 2008 Mar; 283(10):6102-9. PubMed ID: 18167343 [TBL] [Abstract][Full Text] [Related]
28. CFTR: a cysteine at position 338 in TM6 senses a positive electrostatic potential in the pore. Liu X; Zhang ZR; Fuller MD; Billingsley J; McCarty NA; Dawson DC Biophys J; 2004 Dec; 87(6):3826-41. PubMed ID: 15361410 [TBL] [Abstract][Full Text] [Related]
29. Monovalent: Divalent Anion Selectivity in the CFTR Channel Pore. Linsdell P Cell Biochem Biophys; 2021 Dec; 79(4):863-871. PubMed ID: 34031860 [TBL] [Abstract][Full Text] [Related]
30. Localizing a gate in CFTR. Gao X; Hwang TC Proc Natl Acad Sci U S A; 2015 Feb; 112(8):2461-6. PubMed ID: 25675504 [TBL] [Abstract][Full Text] [Related]
31. Functionally additive fixed positive and negative charges in the CFTR channel pore control anion binding and conductance. Linsdell P; Irving CL; Cowley EA J Biol Chem; 2022 Mar; 298(3):101659. PubMed ID: 35101441 [TBL] [Abstract][Full Text] [Related]
32. Cystic fibrosis transmembrane conductance regulator: temperature-dependent cysteine reactivity suggests different stable conformers of the conduction pathway. Liu X; Dawson DC Biochemistry; 2011 Nov; 50(47):10311-7. PubMed ID: 22014307 [TBL] [Abstract][Full Text] [Related]
33. Molecular determinants of Au(CN)(2)(-) binding and permeability within the cystic fibrosis transmembrane conductance regulator Cl(-) channel pore. Gong X; Burbridge SM; Cowley EA; Linsdell P J Physiol; 2002 Apr; 540(Pt 1):39-47. PubMed ID: 11927667 [TBL] [Abstract][Full Text] [Related]
34. Locating the anion-selectivity filter of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Cheung M; Akabas MH J Gen Physiol; 1997 Mar; 109(3):289-99. PubMed ID: 9089437 [TBL] [Abstract][Full Text] [Related]
35. On the relationship between anion binding and chloride conductance in the CFTR anion channel. Linsdell P Biochim Biophys Acta Biomembr; 2021 Apr; 1863(4):183558. PubMed ID: 33444622 [TBL] [Abstract][Full Text] [Related]
36. Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners. Li C; Naren AP Pharmacol Ther; 2005 Nov; 108(2):208-23. PubMed ID: 15936089 [TBL] [Abstract][Full Text] [Related]
37. Pore dilatation increases the bicarbonate permeability of CFTR, ANO1 and glycine receptor anion channels. Jun I; Cheng MH; Sim E; Jung J; Suh BL; Kim Y; Son H; Park K; Kim CH; Yoon JH; Whitcomb DC; Bahar I; Lee MG J Physiol; 2016 Jun; 594(11):2929-55. PubMed ID: 26663196 [TBL] [Abstract][Full Text] [Related]
38. Direct and indirect effects of mutations at the outer mouth of the cystic fibrosis transmembrane conductance regulator chloride channel pore. Zhou JJ; Fatehi M; Linsdell P J Membr Biol; 2007 Apr; 216(2-3):129-42. PubMed ID: 17673962 [TBL] [Abstract][Full Text] [Related]
39. Determination of CFTR chloride channel activity and pharmacology using radiotracer flux methods. Norez C; Heda GD; Jensen T; Kogan I; Hughes LK; Auzanneau C; Dérand R; Bulteau-Pignoux L; Li C; Ramjeesingh M; Li H; Sheppard DN; Bear CE; Riordan JR; Becq F J Cyst Fibros; 2004 Aug; 3 Suppl 2():119-21. PubMed ID: 15463942 [TBL] [Abstract][Full Text] [Related]
40. Direct block of the cystic fibrosis transmembrane conductance regulator Cl(-) channel by niflumic acid. Scott-Ward TS; Li H; Schmidt A; Cai Z; Sheppard DN Mol Membr Biol; 2004; 21(1):27-38. PubMed ID: 14668136 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]