These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 14598394)

  • 1. Osteoconductive and hemostatic properties of apatite formed on/in agarose gel as a bone-grafting material.
    Tabata M; Shimoda T; Sugihara K; Ogomi D; Serizawa T; Akashi M
    J Biomed Mater Res B Appl Biomater; 2003 Nov; 67(2):680-8. PubMed ID: 14598394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apatite formed on/in agarose gel as a bone-grafting material in the treatment of periodontal infrabony defect.
    Tabata M; Shimoda T; Sugihara K; Ogomi D; Ohgushi H; Akashi M
    J Biomed Mater Res B Appl Biomater; 2005 Nov; 75(2):378-86. PubMed ID: 16034996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyapatite formed on/in agarose gel induces activation of blood coagulation and platelets aggregation.
    Arimura S; Kawahara K; Biswas KK; Abeyama K; Tabata M; Shimoda T; Ogomi D; Matsusaki M; Kato S; Ito T; Sugihara K; Akashi M; Hashiguchi T; Maruyama I
    J Biomed Mater Res B Appl Biomater; 2007 May; 81(2):456-61. PubMed ID: 17022065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regenerative behavior of biomineral/agarose composite gels as bone grafting materials in rat cranial defects.
    Suzawa Y; Funaki T; Watanabe J; Iwai S; Yura Y; Nakano T; Umakoshi Y; Akashi M
    J Biomed Mater Res A; 2010 Jun; 93(3):965-75. PubMed ID: 19722281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early effect of platelet-rich plasma on bone healing in combination with an osteoconductive material in rat cranial defects.
    Plachokova AS; van den Dolder J; Stoelinga PJ; Jansen JA
    Clin Oral Implants Res; 2007 Apr; 18(2):244-51. PubMed ID: 17348890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quick-forming hydroxyapatite/agarose gel composites induce bone regeneration.
    Watanabe J; Kashii M; Hirao M; Oka K; Sugamoto K; Yoshikawa H; Akashi M
    J Biomed Mater Res A; 2007 Dec; 83(3):845-52. PubMed ID: 17559128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomineral/Agarose Composite Gels Enhance Proliferation of Mesenchymal Stem Cells with Osteogenic Capability.
    Suzawa Y; Kubo N; Iwai S; Yura Y; Ohgushi H; Akashi M
    Int J Mol Sci; 2015 Jun; 16(6):14245-58. PubMed ID: 26110392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyapatite formation in collagen, gelatin, and agarose gels.
    Hunter GK; Nyburg SC; Pritzker KP
    Coll Relat Res; 1986 Jul; 6(3):229-38. PubMed ID: 3021383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment.
    Kim HM; Himeno T; Kawashita M; Kokubo T; Nakamura T
    J R Soc Interface; 2004 Nov; 1(1):17-22. PubMed ID: 16849149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new HA/TTCP material for bone augmentation: an in vivo histological pilot study in primates sinus grafting.
    Piccinini M; Rebaudi A; Sglavo VM; Bucciotti F; Pierfrancesco R
    Implant Dent; 2013 Feb; 22(1):83-90. PubMed ID: 23296033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical-radiographic and histological evaluation of two hydroxyapatites in human extraction sockets: a pilot study.
    Checchi V; Savarino L; Montevecchi M; Felice P; Checchi L
    Int J Oral Maxillofac Surg; 2011 May; 40(5):526-32. PubMed ID: 21282040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of an alginate carrier on bone formation in a hydroxyapatite scaffold.
    Coathup MJ; Edwards TC; Samizadeh S; Lo WJ; Blunn GW
    J Biomed Mater Res B Appl Biomater; 2016 Oct; 104(7):1328-35. PubMed ID: 26118665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A detailed study of homogeneous agarose/hydroxyapatite nanocomposites for load-bearing bone tissue.
    Hu J; Zhu Y; Tong H; Shen X; Chen L; Ran J
    Int J Biol Macromol; 2016 Jan; 82():134-43. PubMed ID: 26434527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined Treatment Effects Using Bioactive-Coated Implants and Ceramic Granulate in a Rabbit Femoral Condyle Model.
    Preethanath RS; Rajesh P; Varma H; Anil S; Jansen JA; van den Beucken JJ
    Clin Implant Dent Relat Res; 2016 Aug; 18(4):666-77. PubMed ID: 26115085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of cultured bone marrow cells in type I collagen gel and porous hydroxyapatite for posterolateral lumbar spine fusion.
    Minamide A; Yoshida M; Kawakami M; Yamasaki S; Kojima H; Hashizume H; Boden SD
    Spine (Phila Pa 1976); 2005 May; 30(10):1134-8. PubMed ID: 15897826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resorption of synthetic porous hydroxyapatite and replacement by newly formed bone.
    Goto T; Kojima T; Iijima T; Yokokura S; Kawano H; Yamamoto A; Matsuda K
    J Orthop Sci; 2001; 6(5):444-7. PubMed ID: 11845356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteoconduction in keratin-hydroxyapatite composite bone-graft substitutes.
    Dias GJ; Mahoney P; Hung NA; Sharma LA; Kalita P; Smith RA; Kelly RJ; Ali A
    J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):2034-2044. PubMed ID: 27388333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone implants modified with cyclodextrin: study of drug release in bulk fluid and into agarose gel.
    Hoang Thi TH; Chai F; LeprĂȘtre S; Blanchemain N; Martel B; Siepmann F; Hildebrand HF; Siepmann J; Flament MP
    Int J Pharm; 2010 Nov; 400(1-2):74-85. PubMed ID: 20816734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes.
    Zhang L; Rodriguez J; Raez J; Myles AJ; Fenniri H; Webster TJ
    Nanotechnology; 2009 Apr; 20(17):175101. PubMed ID: 19420581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of bone morphogenetic protein and proportion of hydroxyapatite on new bone formation in biphasic calcium phosphate graft: two pilot studies in animal bony defect model.
    Yun PY; Kim YK; Jeong KI; Park JC; Choi YJ
    J Craniomaxillofac Surg; 2014 Dec; 42(8):1909-17. PubMed ID: 25443868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.