These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 14598396)

  • 1. Control of material stiffness during degradation for constructs made of absorbable polymer fibers.
    Dürselen L; Dauner M; Hierlemann H; Planck H; Ignatius A; Claes LE
    J Biomed Mater Res B Appl Biomater; 2003 Nov; 67(2):697-701. PubMed ID: 14598396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resorbable polymer fibers for ligament augmentation.
    Dürselen L; Dauner M; Hierlemann H; Planck H; Claes LE; Ignatius A
    J Biomed Mater Res; 2001; 58(6):666-72. PubMed ID: 11745519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties of biodegradable ligament augmentation device of poly(L-lactide) in vitro and in vivo.
    Laitinen O; Törmälä P; Taurio R; Skutnabb K; Saarelainen K; Iivonen T; Vainionpää S
    Biomaterials; 1992; 13(14):1012-6. PubMed ID: 1472587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological response to a new composite polymer augmentation device used for cruciate ligament reconstruction.
    Dürselen L; Häfner M; Ignatius A; Kraft K; Hollstein E; Pokar S; Dauner M; Claes L; Friemert B
    J Biomed Mater Res B Appl Biomater; 2006 Feb; 76(2):265-72. PubMed ID: 16211566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processing and characterization of absorbable polylactide polymers for use in surgical implants.
    Andriano KP; Pohjonen T; Törmälä P
    J Appl Biomater; 1994; 5(2):133-40. PubMed ID: 10172072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strength of the fixation of patellar tendon bone grafts using a totally absorbable self-reinforced poly-L-lactide expansion plug and screw. An experimental study in a bovine cadaver.
    Tuompo P; Partio EK; Jukkala-Partio K; Pohjonen T; Helevirta P; Rokkanen P
    Arthroscopy; 1996 Aug; 12(4):422-7. PubMed ID: 8863999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Replacement of the anterior cruciate ligament. Biomechanical studies for patellar and semitendinosus tendon fixation with a poly(D,L-lactide) interference screw].
    Weiler A; Hoffmann RF; Südkamp NP; Siepe CJ; Haas NP
    Unfallchirurg; 1999 Feb; 102(2):115-23. PubMed ID: 10098418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanics of synthetic augmentation of ligament reconstructions.
    Van Kampen CL
    Clin Mater; 1994; 15(1):23-7. PubMed ID: 10172021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and properties of degradable poly(urethane urea)s to be used for ligament reconstructions.
    Gisselfält K; Edberg B; Flodin P
    Biomacromolecules; 2002; 3(5):951-8. PubMed ID: 12217040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of strength properties of poly-L/D-lactide (PLDLA) 96/4 and polyglyconate (Maxon) sutures: in vitro, in the subcutis, and in the achilles tendon of rabbits.
    Kangas J; Paasimaa S; Mäkelä P; Leppilahti J; Törmälä P; Waris T; Ashammakhi N
    J Biomed Mater Res; 2001; 58(1):121-6. PubMed ID: 11153008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of load and temperature on in vitro degradation of poly(glycolide-co-L-lactide) multifilament braids.
    Deng M; Zhou J; Chen G; Burkley D; Xu Y; Jamiolkowski D; Barbolt T
    Biomaterials; 2005 Jul; 26(20):4327-36. PubMed ID: 15683657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on in vitro degradation behavior of a poly(glycolide-co-L-lactide) monofilament.
    Deng M; Chen G; Burkley D; Zhou J; Jamiolkowski D; Xu Y; Vetrecin R
    Acta Biomater; 2008 Sep; 4(5):1382-91. PubMed ID: 18442954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic approaches to tendon repair.
    Koob TJ
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Dec; 133(4):1171-92. PubMed ID: 12485699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influences of tensile load on in vitro degradation of an electrospun poly(L-lactide-co-glycolide) scaffold.
    Li P; Feng X; Jia X; Fan Y
    Acta Biomater; 2010 Aug; 6(8):2991-6. PubMed ID: 20170760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of ligament tissue biodegradable devices: a review.
    Vieira AC; Guedes RM; Marques AT
    J Biomech; 2009 Nov; 42(15):2421-30. PubMed ID: 19664774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of pH on the in vitro degradation of poly(glycolide lactide) copolymer absorbable sutures.
    Chu CC
    J Biomed Mater Res; 1982 Mar; 16(2):117-24. PubMed ID: 7061530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Material and knot properties of braided polyester (Ticron) and bioabsorbable poly-L/D-lactide (PLDLA) 96/4 sutures.
    Viinikainen A; Göransson H; Huovinen K; Kellomäki M; Törmälä P; Rokkanen P
    J Mater Sci Mater Med; 2006 Feb; 17(2):169-77. PubMed ID: 16502250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a faster resorbing polymer after real time aging.
    McManus AJ; Moser RC; Thomas KA
    J Biomed Mater Res B Appl Biomater; 2006 Aug; 78(2):358-63. PubMed ID: 16362966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of absorbable poly(ortho esters) for use in surgical implants.
    Daniels AU; Andriano KP; Smutz WP; Chang MK; Heller J
    J Appl Biomater; 1994; 5(1):51-64. PubMed ID: 10146697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strength retention of 70:30 poly(L-lactide-co-D,L-lactide) following real-time aging.
    Moser RC; McManus AJ; Riley SL; Thomas KA
    J Biomed Mater Res B Appl Biomater; 2005 Oct; 75(1):56-63. PubMed ID: 16001395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.