BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 14599316)

  • 1. Oscillators and crank turning: exploiting natural dynamics with a humanoid robot arm.
    Williamson MM
    Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2207-23. PubMed ID: 14599316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time myoprocessors for a neural controlled powered exoskeleton arm.
    Cavallaro EE; Rosen J; Perry JC; Burns S
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2387-96. PubMed ID: 17073345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of anthropomorphic multi-D.O.F. master-slave arm for mutual telexistence.
    Tadakuma R; Asahara Y; Kajimoto H; Kawakami N; Tachi S
    IEEE Trans Vis Comput Graph; 2005; 11(6):626-36. PubMed ID: 16270856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive tracking for pneumatic muscle actuators in bicep and tricep configurations.
    Lilly JH
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):333-9. PubMed ID: 14518798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Humanoid robot Lola: design and walking control.
    Buschmann T; Lohmeier S; Ulbrich H
    J Physiol Paris; 2009; 103(3-5):141-8. PubMed ID: 19665558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive neural control for dual-arm coordination of humanoid robot with unknown nonlinearities in output mechanism.
    Liu Z; Chen C; Zhang Y; Chen CL
    IEEE Trans Cybern; 2015 Mar; 45(3):521-32. PubMed ID: 24968367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonant hopping of a robot controlled by an artificial neural oscillator.
    Pelc EH; Daley MA; Ferris DP
    Bioinspir Biomim; 2008 Jun; 3(2):026001. PubMed ID: 18369282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validating biorobotic models.
    Webb B
    J Neural Eng; 2006 Sep; 3(3):R25-35. PubMed ID: 16921200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. True-slime-mould-inspired hydrostatically coupled oscillator system exhibiting versatile behaviours.
    Umedachi T; Idei R; Ito K; Ishiguro A
    Bioinspir Biomim; 2013 Sep; 8(3):035001. PubMed ID: 23981517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematic feedback control laws for generating natural arm movements.
    Kim D; Jang C; Park FC
    Bioinspir Biomim; 2014 Mar; 9(1):016002. PubMed ID: 24343165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel distributed swarm control strategy based on coupled signal oscillators.
    Hartbauer M; Römer H
    Bioinspir Biomim; 2007 Sep; 2(3):42-56. PubMed ID: 17848790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human-Like Behavior Generation Based on Head-Arms Model for Robot Tracking External Targets and Body Parts.
    Zhang Z; Beck A; Magnenat-Thalmann N
    IEEE Trans Cybern; 2015 Aug; 45(8):1390-400. PubMed ID: 25252290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network structure for control of coupled multiple nonlinear oscillators.
    Funato T; Kurabayashi D
    IEEE Trans Syst Man Cybern B Cybern; 2008 Jun; 38(3):675-81. PubMed ID: 18558532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Human-Robot Co-Manipulation Approach Based on Human Sensorimotor Information.
    Peternel L; Tsagarakis N; Ajoudani A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):811-822. PubMed ID: 28436880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human-arm-and-hand-dynamic model with variability analyses for a stylus-based haptic interface.
    Fu MJ; Cavuşoğlu MC
    IEEE Trans Syst Man Cybern B Cybern; 2012 Dec; 42(6):1633-44. PubMed ID: 22692923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The experimental humanoid robot H7: a research platform for autonomous behaviour.
    Nishiwaki K; Kuffner J; Kagami S; Inaba M; Inoue H
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):79-107. PubMed ID: 17148051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic analysis of motor performance in robot-assisted surgery: a preliminary study.
    Nisky I; Patil S; Hsieh MH; Okamura AM
    Stud Health Technol Inform; 2013; 184():302-8. PubMed ID: 23400175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.
    Or J
    Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human-robot synchrony: flexible assistance using adaptive oscillators.
    Ronsse R; Vitiello N; Lenzi T; van den Kieboom J; Carrozza MC; Ijspeert AJ
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):1001-12. PubMed ID: 20977981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.