These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 14599568)

  • 1. The spatiotemporal precision of ganglion cell signals: a comparison of physiological and psychophysical performance with moving gratings.
    Sun H; Rüttiger L; Lee BB
    Vision Res; 2004 Jan; 44(1):19-33. PubMed ID: 14599568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient cells can be neurometrically sustained: the positional accuracy or retinal signals to moving targets.
    Rüttiger L; Lee B; Sun H
    J Vis; 2002; 2(3):232-42. PubMed ID: 12678585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spatial precision of macaque ganglion cell responses in relation to vernier acuity of human observers.
    Lee BB; Wehrhahn C; Westheimer G; Kremers J
    Vision Res; 1995 Oct; 35(19):2743-58. PubMed ID: 7483315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic misestimation in a vernier task arising from contrast mismatch.
    Sun H; Lee BB; Baraas RC
    Vis Neurosci; 2008; 25(3):365-70. PubMed ID: 18321401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of ganglion cell signals and psychophysical localization of moving targets can help define central motion mechanisms.
    Lee BB; Rüttiger L; Sun H
    Perception; 2005; 34(8):975-81. PubMed ID: 16178152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A single mechanism for both luminance and chromatic grating vernier tasks: evidence from temporal summation.
    Sun H; Lee BB
    Vis Neurosci; 2004; 21(3):315-20. PubMed ID: 15518206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Psychophysical and physiological responses to gratings with luminance and chromatic components of different spatial frequencies.
    Cooper B; Sun H; Lee BB
    J Opt Soc Am A Opt Image Sci Vis; 2012 Feb; 29(2):A314-23. PubMed ID: 22330395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Luminance and chromatic contributions to a hyperacuity task: isolation by contrast polarity and target separation.
    Sun H; Cooper B; Lee BB
    Vision Res; 2012 Mar; 56():28-37. PubMed ID: 22306680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macaque retinal ganglion cell responses to visual patterns: harmonic composition, noise, and psychophysical detectability.
    Cooper B; Lee BB; Cao D
    J Neurophysiol; 2016 Jun; 115(6):2976-88. PubMed ID: 26936977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An examination of physiological mechanisms underlying the frequency-doubling illusion.
    White AJ; Sun H; Swanson WH; Lee BB
    Invest Ophthalmol Vis Sci; 2002 Nov; 43(11):3590-9. PubMed ID: 12407172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aliasing for rapidly counterphasing stimuli: a failure to demonstrate an M-cell sampling limit to resolution.
    McKendrick AM; Johnson CA
    J Opt Soc Am A Opt Image Sci Vis; 2000 Oct; 17(10):1703-12. PubMed ID: 11028518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple model of human foveal ganglion cell responses to hyperacuity stimuli.
    Wachtler T; Wehrhahn C; Lee BB
    J Comput Neurosci; 1996 Mar; 3(1):73-82. PubMed ID: 8717490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segregation of chromatic and luminance signals using a novel grating stimulus.
    Lee BB; Sun H; Valberg A
    J Physiol; 2011 Jan; 589(Pt 1):59-73. PubMed ID: 20937716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macaque ganglion cell responses to stimuli that elicit hyperacuity in man: detection of small displacements.
    Lee BB; Wehrhahn C; Westheimer G; Kremers J
    J Neurosci; 1993 Mar; 13(3):1001-9. PubMed ID: 8441000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vernier acuity with compound gratings: the whole is equal to the better of its parts.
    Barrett BT; Whitaker D; Bradley A
    Vision Res; 1999 Nov; 39(22):3681-91. PubMed ID: 10746138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The temporal properties of the response of macaque ganglion cells and central mechanisms of flicker detection.
    Lee BB; Sun H; Zucchini W
    J Vis; 2007 Nov; 7(14):1.1-16. PubMed ID: 18217796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colour adaptation modifies the temporal properties of the long- and middle-wave cone signals in the human luminance mechanism.
    Stromeyer CF; Gowdy PD; Chaparro A; Kladakis S; Willen JD; Kronauer RE
    J Physiol; 2000 Jul; 526 Pt 1(Pt 1):177-94. PubMed ID: 10878110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of macaque ganglion cells to movement of chromatic borders.
    Valberg A; Lee BB; Kaiser PK; Kremers J
    J Physiol; 1992 Dec; 458():579-602. PubMed ID: 1302280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker.
    Lee BB; Martin PR; Valberg A
    J Physiol; 1989 Jul; 414():223-43. PubMed ID: 2607430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of macaque ganglion cells and human observers to compound periodic waveforms.
    Kremers J; Lee BB; Pokorny J; Smith VC
    Vision Res; 1993 Sep; 33(14):1997-2011. PubMed ID: 8249315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.