These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 14599585)

  • 1. Copper sorption by chitosan in the presence of citrate ions: influence of metal speciation on sorption mechanism and uptake capacities.
    Guzman J; Saucedo I; Revilla J; Navarro R; Guibal E
    Int J Biol Macromol; 2003 Nov; 33(1-3):57-65. PubMed ID: 14599585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Properties of chitosan and sorption of copper ions from a copper sulfate solution on chitosan].
    Kopecký F; Kopecká B; Semjanová O
    Ceska Slov Farm; 2002 May; 51(3):134-9. PubMed ID: 12058354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of copper-citrate complexes on chitosan: equilibrium modeling.
    Lu PJ; Hu WW; Chen TS; Chern JM
    Bioresour Technol; 2010 Feb; 101(4):1127-34. PubMed ID: 19822423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient sorption of Cu(2+) by composite chelating sorbents based on potato starch-graft-polyamidoxime embedded in chitosan beads.
    Dragan ES; Apopei Loghin DF; Cocarta AI
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16577-92. PubMed ID: 25191990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal efficiency and binding mechanisms of copper and copper-EDTA complexes using polyethyleneimine.
    Maketon W; Zenner CZ; Ogden KL
    Environ Sci Technol; 2008 Mar; 42(6):2124-9. PubMed ID: 18409647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between chitosan and uranyl ions. Part 1. Role of physicochemical parameters.
    Piron E; Domard A
    Int J Biol Macromol; 1997 Dec; 21(4):327-35. PubMed ID: 9493056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption of Cu(II) complexes with ligands tartrate, glycine and quadrol by chitosan.
    Gyliene O; Binkiene R; Butkiene R
    J Hazard Mater; 2009 Nov; 171(1-3):133-9. PubMed ID: 19540041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical modification of chitosan and equilibrium study for mercury ion removal.
    Jeon C; Höll WH
    Water Res; 2003 Nov; 37(19):4770-80. PubMed ID: 14568064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of copper(II) using chitin/chitosan nano-hydroxyapatite composite.
    Rajiv Gandhi M; Kousalya GN; Meenakshi S
    Int J Biol Macromol; 2011 Jan; 48(1):119-24. PubMed ID: 20970443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of free and complexed heavy-metal ions by sorbents produced from fly (Musca domestica) larva shells.
    Gyliene O; Rekertas R; Salkauskas M
    Water Res; 2002 Sep; 36(16):4128-36. PubMed ID: 12405421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption behaviour of Co(II) and Cu(II) on chitosan in presence of nitrilotriacetic acid.
    Padala AN; Bhaskarapillai A; Velmurugan S; Narasimhan SV
    J Hazard Mater; 2011 Jul; 191(1-3):110-7. PubMed ID: 21592656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simplified equilibrium model for sorption of heavy metal ions from aqueous solutions on chitosan.
    Juang RS; Shao HJ
    Water Res; 2002 Jul; 36(12):2999-3008. PubMed ID: 12171397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equilibrium studies of the sorption of Cu(II) ions onto chitosan.
    Ng JC; Cheung WH; McKay G
    J Colloid Interface Sci; 2002 Nov; 255(1):64-74. PubMed ID: 12702369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron humate as a low-cost sorbent for metal ions.
    Janos P; Fedorovic J; Stanková P; Grötschelová S; Rejnek J; Stopka P
    Environ Technol; 2006 Feb; 27(2):169-81. PubMed ID: 16506513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of copper, chromium, and arsenic from CCA-treated wood onto chitin and chitosan.
    Kartal SN; Imamura Y
    Bioresour Technol; 2005 Feb; 96(3):389-92. PubMed ID: 15474943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of arsenic-containing solutions using chitosan derivatives: uptake mechanism and sorption performances.
    Dambies L; Vincent T; Guibal E
    Water Res; 2002 Sep; 36(15):3699-710. PubMed ID: 12369517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of dissolved rhenium by sorption onto organic polymers: study of rhenium as an analogue of radioactive technetium.
    Kim E; Benedetti MF; Boulègue J
    Water Res; 2004 Jan; 38(2):448-54. PubMed ID: 14675657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple synthesis and chelation capacity of N-(2-sulfoethyl)chitosan, a taurine derivative.
    Petrova YS; Neudachina LK; Mekhaev AV; Pestov AV
    Carbohydr Polym; 2014 Nov; 112():462-8. PubMed ID: 25129768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper(II)-EDTA sorption onto chitosan and its regeneration applying electrolysis.
    Gyliene O; Nivinskiene O; Razmute I
    J Hazard Mater; 2006 Oct; 137(3):1430-7. PubMed ID: 16766122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-chelate sorbents based on carboxyalkylchitosans: Ciprofloxacin uptake by Cu(II) and Al(III)-chelated cryogels of N-(2-carboxyethyl)chitosan.
    Privar Y; Shashura D; Pestov A; Modin E; Baklykov A; Marinin D; Bratskaya S
    Int J Biol Macromol; 2019 Jun; 131():806-811. PubMed ID: 30904527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.