BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 14599594)

  • 1. Irreversible self-assembly of ovalbumin into fibrils and the resulting network rheology.
    Veerman C; de Schiffart G; Sagis LM; van der Linden E
    Int J Biol Macromol; 2003 Nov; 33(1-3):121-7. PubMed ID: 14599594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of electrostatic interactions on the percolation concentration of fibrillar beta-lactoglobulin gels.
    Veerman C; Ruis H; Sagis LM; van der Linden E
    Biomacromolecules; 2002; 3(4):869-73. PubMed ID: 12099836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoscopic properties of semiflexible amyloid fibrils.
    Sagis LM; Veerman C; van der Linden E
    Langmuir; 2004 Feb; 20(3):924-7. PubMed ID: 15773124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesostructure of fibrillar bovine serum albumin gels.
    Veerman C; Sagis LM; Heck J; van der Linden E
    Int J Biol Macromol; 2003 Jan; 31(4-5):139-46. PubMed ID: 12568921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the N-terminal amphiphilic region of ovalbumin during heat-induced aggregation and gelation.
    Kawachi Y; Kameyama R; Handa A; Takahashi N; Tanaka N
    J Agric Food Chem; 2013 Sep; 61(36):8668-75. PubMed ID: 23909792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sol-gel transition of charged fibrils composed of a model amphiphilic peptide.
    Owczarz M; Bolisetty S; Mezzenga R; Arosio P
    J Colloid Interface Sci; 2015 Jan; 437():244-251. PubMed ID: 25441357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous control of pH and ionic strength during interfacial rheology of β-lactoglobulin fibrils adsorbed at liquid/liquid Interfaces.
    Rühs PA; Scheuble N; Windhab EJ; Mezzenga R; Fischer P
    Langmuir; 2012 Aug; 28(34):12536-43. PubMed ID: 22857147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly of ovalbumin into amyloid and non-amyloid fibrils.
    Lara C; Gourdin-Bertin S; Adamcik J; Bolisetty S; Mezzenga R
    Biomacromolecules; 2012 Dec; 13(12):4213-21. PubMed ID: 23098330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcapsules with protein fibril reinforced shells: effect of fibril properties on mechanical strength of the shell.
    Humblet-Hua NP; van der Linden E; Sagis LM
    J Agric Food Chem; 2012 Sep; 60(37):9502-11. PubMed ID: 22906204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elasticity in Physically Cross-Linked Amyloid Fibril Networks.
    Cao Y; Bolisetty S; Adamcik J; Mezzenga R
    Phys Rev Lett; 2018 Apr; 120(15):158103. PubMed ID: 29756901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new multistep Ca2+-induced cold gelation process for beta-lactoglobulin.
    Veerman C; Baptist H; Sagis LM; van der Linden E
    J Agric Food Chem; 2003 Jun; 51(13):3880-5. PubMed ID: 12797759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do sulfhydryl groups affect aggregation and gelation properties of ovalbumin?
    Broersen K; Van Teeffelen AM; Vries A; Voragen AG; Hamer RJ; De Jongh HH
    J Agric Food Chem; 2006 Jul; 54(14):5166-74. PubMed ID: 16819931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Β-lactoglobulin self-assembly: structural changes in early stages and disulfide bonding in fibrils.
    Dave AC; Loveday SM; Anema SG; Loo TS; Norris GE; Jameson GB; Singh H
    J Agric Food Chem; 2013 Aug; 61(32):7817-28. PubMed ID: 23848407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gelation, phase behavior, and dynamics of β-lactoglobulin amyloid fibrils at varying concentrations and ionic strengths.
    Bolisetty S; Harnau L; Jung JM; Mezzenga R
    Biomacromolecules; 2012 Oct; 13(10):3241-52. PubMed ID: 22924940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors affecting rheological characteristics of fibril gels: the case of beta-lactoglobulin and alpha-lactalbumin.
    Loveday SM; Rao MA; Creamer LK; Singh H
    J Food Sci; 2009 Apr; 74(3):R47-55. PubMed ID: 19397731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural characteristics and rheological properties of ovalbumin-gum arabic complex coacervates.
    Niu F; Kou M; Fan J; Pan W; Feng ZJ; Su Y; Yang Y; Zhou W
    Food Chem; 2018 Sep; 260():1-6. PubMed ID: 29699649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nitric oxide on conformational changes of ovalbumin accompanying self-assembly into non-disease-associated fibrils.
    You DJ; Lee JH; Kim JY; Jhon GJ; Jung HS
    Nitric Oxide; 2015 May; 47():1-9. PubMed ID: 25683505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism.
    Nielsen L; Khurana R; Coats A; Frokjaer S; Brange J; Vyas S; Uversky VN; Fink AL
    Biochemistry; 2001 May; 40(20):6036-46. PubMed ID: 11352739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating β-lactoglobulin nanofibril self-assembly at pH 2 using glycerol and sorbitol.
    Dave AC; Loveday SM; Anema SG; Jameson GB; Singh H
    Biomacromolecules; 2014 Jan; 15(1):95-103. PubMed ID: 24328086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of heat-induced aggregation of globular proteins.
    Delahaije RJ; Wierenga PA; Giuseppin ML; Gruppen H
    J Agric Food Chem; 2015 Jun; 63(21):5257-65. PubMed ID: 25965109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.