Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 14599742)

  • 1. Strand-specific processing of 8-oxoguanine by the human mismatch repair pathway: inefficient removal of 8-oxoguanine paired with adenine or cytosine.
    Larson ED; Iams K; Drummond JT
    DNA Repair (Amst); 2003 Nov; 2(11):1199-210. PubMed ID: 14599742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replication-associated repair of adenine:8-oxoguanine mispairs by MYH.
    Hayashi H; Tominaga Y; Hirano S; McKenna AE; Nakabeppu Y; Matsumoto Y
    Curr Biol; 2002 Feb; 12(4):335-9. PubMed ID: 11864576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The presence of two distinct 8-oxoguanine repair enzymes in human cells: their potential complementary roles in preventing mutation.
    Hazra TK; Izumi T; Maidt L; Floyd RA; Mitra S
    Nucleic Acids Res; 1998 Nov; 26(22):5116-22. PubMed ID: 9801308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Escherichia coli Nth and human hNTH1 DNA glycosylases are involved in removal of 8-oxoguanine from 8-oxoguanine/guanine mispairs in DNA.
    Matsumoto Y; Zhang QM; Takao M; Yasui A; Yonei S
    Nucleic Acids Res; 2001 May; 29(9):1975-81. PubMed ID: 11328882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites.
    Bjorâs M; Luna L; Johnsen B; Hoff E; Haug T; Rognes T; Seeberg E
    EMBO J; 1997 Oct; 16(20):6314-22. PubMed ID: 9321410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Escherichia coli methyl-directed mismatch repair system repairs base pairs containing oxidative lesions.
    Wyrzykowski J; Volkert MR
    J Bacteriol; 2003 Mar; 185(5):1701-4. PubMed ID: 12591888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opposite base-dependent excision of 7,8-dihydro-8-oxoadenine by the Ogg1 protein of Saccharomyces cerevisiae.
    Girard PM; D'Ham C; Cadet J; Boiteux S
    Carcinogenesis; 1998 Jul; 19(7):1299-305. PubMed ID: 9683192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in vivo functions.
    Hazra TK; Hill JW; Izumi T; Mitra S
    Prog Nucleic Acid Res Mol Biol; 2001; 68():193-205. PubMed ID: 11554297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 8-oxoguanine incorporation into DNA repeats in vitro and mismatch recognition by MutSalpha.
    Macpherson P; Barone F; Maga G; Mazzei F; Karran P; Bignami M
    Nucleic Acids Res; 2005; 33(16):5094-105. PubMed ID: 16174844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase.
    Fromme JC; Banerjee A; Huang SJ; Verdine GL
    Nature; 2004 Feb; 427(6975):652-6. PubMed ID: 14961129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The post-replication repair RAD18 and RAD6 genes are involved in the prevention of spontaneous mutations caused by 7,8-dihydro-8-oxoguanine in Saccharomyces cerevisiae.
    de Padula M; Slezak G; Auffret van Der Kemp P; Boiteux S
    Nucleic Acids Res; 2004; 32(17):5003-10. PubMed ID: 15388802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for the lack of opposite base specificity of Clostridium acetobutylicum 8-oxoguanine DNA glycosylase.
    Faucher F; Wallace SS; Doublié S
    DNA Repair (Amst); 2009 Nov; 8(11):1283-9. PubMed ID: 19747886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. APE1-dependent repair of DNA single-strand breaks containing 3'-end 8-oxoguanine.
    Parsons JL; Dianova II; Dianov GL
    Nucleic Acids Res; 2005; 33(7):2204-9. PubMed ID: 15831793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of oxidized purine processing on strand directionality of mismatch repair.
    Repmann S; Olivera-Harris M; Jiricny J
    J Biol Chem; 2015 Apr; 290(16):9986-99. PubMed ID: 25694431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of base excision repair of 8-oxoguanine by the nucleotide sequence.
    Allgayer J; Kitsera N; von der Lippen C; Epe B; Khobta A
    Nucleic Acids Res; 2013 Oct; 41(18):8559-71. PubMed ID: 23863843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MSH2 and MSH6 are required for removal of adenine misincorporated opposite 8-oxo-guanine in S. cerevisiae.
    Ni TT; Marsischky GT; Kolodner RD
    Mol Cell; 1999 Sep; 4(3):439-44. PubMed ID: 10518225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Product inhibition and magnesium modulate the dual reaction mode of hOgg1.
    Morland I; Luna L; Gustad E; Seeberg E; Bjørås M
    DNA Repair (Amst); 2005 Mar; 4(3):381-7. PubMed ID: 15661661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases.
    Boiteux S; Coste F; Castaing B
    Free Radic Biol Med; 2017 Jun; 107():179-201. PubMed ID: 27903453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of hydantoin products of 8-oxoguanine oxidation by the Escherichia coli DNA repair enzyme, FPG.
    Leipold MD; Muller JG; Burrows CJ; David SS
    Biochemistry; 2000 Dec; 39(48):14984-92. PubMed ID: 11101315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binary complex crystal structure of DNA polymerase β reveals multiple conformations of the templating 8-oxoguanine lesion.
    Batra VK; Shock DD; Beard WA; McKenna CE; Wilson SH
    Proc Natl Acad Sci U S A; 2012 Jan; 109(1):113-8. PubMed ID: 22178760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.