These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 14600)

  • 21. [The phenoloxidases of the ascomycete Podospora anserina. IV. Purification and properties of tyrosinase].
    Herzfeld F; Esser K
    Arch Mikrobiol; 1969; 65(2):146-62. PubMed ID: 4988683
    [No Abstract]   [Full Text] [Related]  

  • 22. Laccases and other polyphenol oxidases in ecto- and ericoid mycorrhizal fungi.
    Burke RM; Cairney JW
    Mycorrhiza; 2002 Jun; 12(3):105-16. PubMed ID: 12072980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Concerted electron/proton transfer mechanism in the oxidation of phenols by laccase.
    Galli C; Madzak C; Vadalà R; Jolivalt C; Gentili P
    Chembiochem; 2013 Dec; 14(18):2500-5. PubMed ID: 24151197
    [TBL] [Abstract][Full Text] [Related]  

  • 24. "Yellow" laccase from Sclerotinia sclerotiorum is a blue laccase that enhances its substrate affinity by forming a reversible tyrosyl-product adduct.
    Mot AC; Coman C; Hadade N; Damian G; Silaghi-Dumitrescu R; Heering H
    PLoS One; 2020; 15(1):e0225530. PubMed ID: 31961889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The molecular mechanism of protoplasmic incompatibility and its relationship to the formation of protoperithecia in Podospora anserina.
    Boucherie H; Bégueret J; Bernet J
    J Gen Microbiol; 1976 Jan; 92(1):59-66. PubMed ID: 1245840
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phenol oxidases and morphogenesis in Podospora anserina.
    Esser K
    Genetics; 1968 Oct; 60(2):281-8. PubMed ID: 4977728
    [No Abstract]   [Full Text] [Related]  

  • 27. Kinetic study on the suicide inactivation of tyrosinase induced by catechol.
    García Cánovas F; Tudela J; Martínez Madrid C; Varón R; García Carmona F; Lozano JA
    Biochim Biophys Acta; 1987 Apr; 912(3):417-23. PubMed ID: 3105585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catecholase activity of a series of dicopper(II) complexes with variable Cu-OH(phenol) moieties.
    Neves A; Rossi LM; Bortoluzzi AJ; Szpoganicz B; Wiezbicki C; Schwingel E; Haase W; Ostrovsky S
    Inorg Chem; 2002 Apr; 41(7):1788-94. PubMed ID: 11925171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Kinetic analysis of laccase catalyze phenolic and aniline compounds and detecting catechol in wastewater].
    Zhong PF; Peng HM; Peng FY; Cai Q; He M
    Huan Jing Ke Xue; 2010 Nov; 31(11):2673-7. PubMed ID: 21250450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transgenic rice as a novel production system for Melanocarpus and Pycnoporus laccases.
    de Wilde C; Uzan E; Zhou Z; Kruus K; Andberg M; Buchert J; Record E; Asther M; Lomascolo A
    Transgenic Res; 2008 Aug; 17(4):515-27. PubMed ID: 17687629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bilirubin oxidase-like proteins from Podospora anserina: promising thermostable enzymes for application in transformation of plant biomass.
    Xie N; Ruprich-Robert G; Silar P; Chapeland-Leclerc F
    Environ Microbiol; 2015 Mar; 17(3):866-75. PubMed ID: 24947769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure-function studies of a Melanocarpus albomyces laccase suggest a pathway for oxidation of phenolic compounds.
    Kallio JP; Auer S; Jänis J; Andberg M; Kruus K; Rouvinen J; Koivula A; Hakulinen N
    J Mol Biol; 2009 Oct; 392(4):895-909. PubMed ID: 19563811
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability.
    Xu F; Shin W; Brown SH; Wahleithner JA; Sundaram UM; Solomon EI
    Biochim Biophys Acta; 1996 Feb; 1292(2):303-11. PubMed ID: 8597577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Catalytic properties of extracellular phenol oxidases from the higher basidiomycete Pleurotus ostreatus (Fr.) Kumm].
    Butovich IA; Semichaevskiĭ VD
    Ukr Biokhim Zh (1978); 1986; 58(4):18-26. PubMed ID: 3090755
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy.
    Munk L; Andersen ML; Meyer AS
    Enzyme Microb Technol; 2017 Nov; 106():88-96. PubMed ID: 28859815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of alkaliphilic laccase activity in the culture supernatant of Myrothecium verrucaria 24G-4 in comparison with bilirubin oxidase.
    Sulistyaningdyah WT; Ogawa J; Tanaka H; Maeda C; Shimizu S
    FEMS Microbiol Lett; 2004 Jan; 230(2):209-14. PubMed ID: 14757242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systematic gene deletions evidences that laccases are involved in several stages of wood degradation in the filamentous fungus Podospora anserina.
    Xie N; Chapeland-Leclerc F; Silar P; Ruprich-Robert G
    Environ Microbiol; 2014 Jan; 16(1):141-61. PubMed ID: 24102726
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic study of hydroxytyrosol oxidation and its related compounds by Red Globe grape polyphenol oxidase.
    García-García MI; Hernández-García S; Sánchez-Ferrer Á; García-Carmona F
    J Agric Food Chem; 2013 Jun; 61(25):6050-5. PubMed ID: 23725049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Podospora anserina mutant defective in protoperithecium formation, ascospore germination, and cell regeneration.
    Durrens P; Laigret F; Labarère J; Bernet J
    J Bacteriol; 1979 Dec; 140(3):835-42. PubMed ID: 118158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression, purification, and characterization of a novel laccase from Setosphaeria turcica in Eschericha coli.
    Ma S; Liu N; Jia H; Dai D; Zang J; Cao Z; Dong J
    J Basic Microbiol; 2018 Jan; 58(1):68-75. PubMed ID: 29112275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.