BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 14600223)

  • 61. Functional analysis of an endo-1,6-beta-D-glucanase gene (neg-1) from Neurospora crassa.
    Oyama S; Inoue H; Yamagata Y; Nakajima T; Abe K
    Biosci Biotechnol Biochem; 2006 Jul; 70(7):1773-5. PubMed ID: 16861813
    [TBL] [Abstract][Full Text] [Related]  

  • 62. SO, a protein involved in hyphal fusion in Neurospora crassa, localizes to septal plugs.
    Fleissner A; Glass NL
    Eukaryot Cell; 2007 Jan; 6(1):84-94. PubMed ID: 17099082
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Neurons show the path: tip-to-nucleus communication in filamentous fungal development and pathogenesis.
    Etxebeste O; Espeso EA
    FEMS Microbiol Rev; 2016 Sep; 40(5):610-24. PubMed ID: 27587717
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans.
    Horio T; Oakley BR
    Mol Biol Cell; 2005 Feb; 16(2):918-26. PubMed ID: 15548594
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cell elongation and branching are regulated by differential phosphorylation states of the nuclear Dbf2-related kinase COT1 in Neurospora crassa.
    Ziv C; Kra-Oz G; Gorovits R; März S; Seiler S; Yarden O
    Mol Microbiol; 2009 Nov; 74(4):974-89. PubMed ID: 19818014
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The NcZrg-17 gene of Neurospora crassa encodes a cation diffusion facilitator transporter required for vegetative development, tolerance to endoplasmic reticulum stress and cellulose degradation under low zinc conditions.
    Tiwari A; Ngiilmei SD; Tamuli R
    Curr Genet; 2018 Aug; 64(4):811-819. PubMed ID: 29256005
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Enzyme inactivation related to a hyperoxidant state during conidiation of Neurospora crassa.
    Toledo I; Aguirre J; Hansberg W
    Microbiology (Reading); 1994 Sep; 140 ( Pt 9)():2391-7. PubMed ID: 7952190
    [TBL] [Abstract][Full Text] [Related]  

  • 68. What determines growth direction in fungal hyphae?
    Riquelme M; Reynaga-Peña CG; Gierz G; Bartnicki-García S
    Fungal Genet Biol; 1998; 24(1-2):101-9. PubMed ID: 9742196
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Redox imbalance at the start of each morphogenetic step of Neurospora crassa conidiation.
    Toledo I; Rangel P; Hansberg W
    Arch Biochem Biophys; 1995 Jun; 319(2):519-24. PubMed ID: 7786037
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Automated, continuous video microscopy tracking of hyphal growth.
    Sánchez-Orellana G; Casas-Flores S; Gutiérrez-Medina B
    Fungal Genet Biol; 2019 Feb; 123():25-32. PubMed ID: 30508595
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Role of BGT-1 and BGT-2, two predicted GPI-anchored glycoside hydrolases/glycosyltransferases, in cell wall remodeling in Neurospora crassa.
    Martínez-Núñez L; Riquelme M
    Fungal Genet Biol; 2015 Dec; 85():58-70. PubMed ID: 26541633
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Induction of contour sensing in Aspergillus niger by stress and its relevance to fungal growth mechanics and hyphal tip structure.
    Bowen AD; Davidson FA; Keatch R; Gadd GM
    Fungal Genet Biol; 2007 Jun; 44(6):484-91. PubMed ID: 17267249
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Neurospora crassa developmental control mediated by the FLB-3 transcription factor.
    Boni AC; Ambrósio DL; Cupertino FB; Montenegro-Montero A; Virgilio S; Freitas FZ; Corrocher FA; Gonçalves RD; Yang A; Weirauch MT; Hughes TR; Larrondo LF; Bertolini MC
    Fungal Biol; 2018 Jun; 122(6):570-582. PubMed ID: 29801802
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Evidence for tryptophan being a signal molecule that inhibits conidial anastomosis tube fusion during colony initiation in Neurospora crassa.
    Fischer-Harman V; Jackson KJ; Muñoz A; Shoji JY; Read ND
    Fungal Genet Biol; 2012 Nov; 49(11):896-902. PubMed ID: 22939838
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Protein phosphatase 2A is involved in hyphal growth of Neurospora crassa.
    Yatzkan E; Szöor B; Fehér Z; Dombrádi V; Yarden O
    Mol Gen Genet; 1998 Sep; 259(5):523-31. PubMed ID: 9790584
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Rhythmic conidiation in Neurospora crassa.
    Kramer C
    Methods Mol Biol; 2007; 362():49-65. PubMed ID: 17417000
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Transcellular ion currents and extension of Neurospora crassa hyphae.
    Takeuchi Y; Schmid J; Caldwell JH; Harold FM
    J Membr Biol; 1988; 101(1):33-41. PubMed ID: 2966862
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Microtubule dynamics and the role of molecular motors in Neurospora crassa.
    Uchida M; Mouriño-Pérez RR; Freitag M; Bartnicki-García S; Roberson RW
    Fungal Genet Biol; 2008 May; 45(5):683-92. PubMed ID: 18069024
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cytoskeletal regulation of ion channel distribution in the tip-growing organism Saprolegnia ferax.
    Levina NN; Lew RR; Heath IB
    J Cell Sci; 1994 Jan; 107 ( Pt 1)():127-34. PubMed ID: 7513711
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The pulse of the machine - reevaluating tip-growth methodology.
    Money NP
    New Phytol; 2001 Sep; 151(3):553-555. PubMed ID: 33853261
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.