BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 14600335)

  • 1. Fixation response of two cementless tibial implants under static and fatigue compression loading.
    Dammak M; Shirazi-Adl A; Zukor DJ
    Technol Health Care; 2003; 11(4):245-52. PubMed ID: 14600335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and finite element comparison of various fixation designs in combined loads.
    Shirazi-Adl A; Patenaude O; Dammak M; Zukor D
    J Biomech Eng; 2001 Oct; 123(5):391-5. PubMed ID: 11601722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of initial fixation of the tibial component in cementless total knee arthroplasty.
    Shimagaki H; Bechtold JE; Sherman RE; Gustilo RB
    J Orthop Res; 1990 Jan; 8(1):64-71. PubMed ID: 2293635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of bone-prosthesis interface micromotion for cementless tibial prosthesis fixation and the influence of loading conditions.
    Chong DY; Hansen UN; Amis AA
    J Biomech; 2010 Apr; 43(6):1074-80. PubMed ID: 20189576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Addition of a short central extension to surface cemented tibial trays in primary TKA: an in vitro study of the effect on initial fixation stability and its relationship to supporting bone density.
    Pérez-Blanca A; Prado M; Ezquerro F; Montañéz E; Espejo A
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):483-92. PubMed ID: 18171597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of fixation technique on displacement incompatibilities at the bone-implant interface in cementless total knee replacement in a canine model.
    Berzins A; Sumner DR; Turner TM; Natarajan R
    J Appl Biomater; 1994; 5(4):349-52. PubMed ID: 8580542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of screws and a sleeve on initial fixation in uncemented total knee tibial components.
    Miura H; Whiteside LA; Easley JC; Amador DD
    Clin Orthop Relat Res; 1990 Oct; (259):160-8. PubMed ID: 2208851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of tibial stem design on component micromotion in knee arthroplasty.
    Stern SH; Wills RD; Gilbert JL
    Clin Orthop Relat Res; 1997 Dec; (345):44-52. PubMed ID: 9418620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of screw types in cementless fixation of tibial tray implants: stability and strength assessment.
    Lee TQ; Barnett SL; Kim WC
    Clin Biomech (Bristol, Avon); 1999 May; 14(4):258-64. PubMed ID: 10619113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of tibial component fixation in specimens retrieved at autopsy.
    Matsuda S; Tanner MG; White SE; Whiteside LA
    Clin Orthop Relat Res; 1999 Jun; (363):249-57. PubMed ID: 10379329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micromotion of cementless tibial baseplates under physiological loading conditions.
    Bhimji S; Meneghini RM
    J Arthroplasty; 2012 Apr; 27(4):648-54. PubMed ID: 21831575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of screws and pegs on the initial fixation stability of an uncemented unicondylar knee replacement.
    Kaiser AD; Whiteside LA
    Clin Orthop Relat Res; 1990 Oct; (259):169-78. PubMed ID: 2208852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental determination of friction characteristics at the trabecular bone/porous-coated metal interface in cementless implants.
    Shirazi-Adl A; Dammak M; Paiement G
    J Biomed Mater Res; 1993 Feb; 27(2):167-75. PubMed ID: 8436573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of fixation and bone quality on the mechanical stability of tibial knee components.
    Lee RW; Volz RG; Sheridan DC
    Clin Orthop Relat Res; 1991 Dec; (273):177-83. PubMed ID: 1959268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical comparison of two side plate fixation techniques in an unstable intertrochanteric osteotomy model: Sliding Hip Screw and Percutaneous Compression Plate.
    Krischak GD; Augat P; Beck A; Arand M; Baier B; Blakytny R; Gebhard F; Claes L
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1112-8. PubMed ID: 17900766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mechanical comparison of the locking compression plate (LCP) and the low contact-dynamic compression plate (DCP) in an osteoporotic bone model.
    Snow M; Thompson G; Turner PG
    J Orthop Trauma; 2008 Feb; 22(2):121-5. PubMed ID: 18349780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does a tensioning device pinned to the tibia improve knee anterior-posterior load-displacement compared to manual tensioning of the graft following anterior cruciate ligament reconstruction? A cadaveric study of two tibial fixation devices.
    Thompson DM; Hull ML; Howell SM
    J Orthop Res; 2006 Sep; 24(9):1832-41. PubMed ID: 16865723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical response of polyethylene tibial component using compression loading contact test: experimental and finite element analysis.
    Ketata H; Krichen A; Kharrat M; Dammak M
    Technol Health Care; 2006; 14(6):479-87. PubMed ID: 17148860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of varus/valgus malalignment on bone strains in the proximal tibia after TKR: an explicit finite element study.
    Perillo-Marcone A; Taylor M
    J Biomech Eng; 2007 Feb; 129(1):1-11. PubMed ID: 17227092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanical stability of various noncemented tibial components.
    Volz RG; Nisbet JK; Lee RW; McMurtry MG
    Clin Orthop Relat Res; 1988 Jan; (226):38-42. PubMed ID: 3335105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.