BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 14600374)

  • 1. Molecular mobility of lyophilized poly(vinylpyrrolidone) and methylcellulose as determined by the laboratory and rotating frame spin-lattice relaxation times of 1H and 13C.
    Yoshioka S; Aso Y; Kojima S
    Chem Pharm Bull (Tokyo); 2003 Nov; 51(11):1289-92. PubMed ID: 14600374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different molecular motions in lyophilized protein formulations as determined by laboratory and rotating frame spin-lattice relaxation times.
    Yoshioka S; Aso Y; Kojima S
    J Pharm Sci; 2002 Oct; 91(10):2203-10. PubMed ID: 12226847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miscibility of nifedipine and hydrophilic polymers as measured by (1)H-NMR spin-lattice relaxation.
    Aso Y; Yoshioka S; Miyazaki T; Kawanishi T; Tanaka K; Kitamura S; Takakura A; Hayashi T; Muranushi N
    Chem Pharm Bull (Tokyo); 2007 Aug; 55(8):1227-31. PubMed ID: 17666850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of excipients on the molecular mobility of lyophilized formulations, as measured by glass transition temperature and NMR relaxation-based critical mobility temperature.
    Yoshioka S; Aso Y; Kojima S
    Pharm Res; 1999 Jan; 16(1):135-40. PubMed ID: 9950292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of water on the molecular mobility of sucrose and poly(vinylpyrrolidone) in a colyophilized formulation as measured by (13)C-NMR relaxation time.
    Aso Y; Yoshioka S; Zhang J; Zografi G
    Chem Pharm Bull (Tokyo); 2002 Jun; 50(6):822-6. PubMed ID: 12045339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glass transition-related changes in molecular mobility below glass transition temperature of freeze-dried formulations, as measured by dielectric spectroscopy and solid state nuclear magnetic resonance.
    Yoshioka S; Aso Y
    J Pharm Sci; 2005 Feb; 94(2):275-87. PubMed ID: 15570601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of local mobility in aggregation of beta-galactosidase lyophilized with trehalose, sucrose or stachyose.
    Yoshioka S; Miyazaki T; Aso Y; Kawanishi T
    Pharm Res; 2007 Sep; 24(9):1660-7. PubMed ID: 17404806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mobility of protein in lyophilized formulations linked to the molecular mobility of polymer excipients, as determined by high resolution 13C solid-state NMR.
    Yoshioka S; Aso Y; Kojima S; Sakurai S; Fujiwara T; Akutsu H
    Pharm Res; 1999 Oct; 16(10):1621-5. PubMed ID: 10554107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of 19F-NMR for assessing the molecular mobility of flufenamic acid in solid dispersions.
    Aso Y; Yoshioka S; Miyazaki T; Kawanishi T
    Chem Pharm Bull (Tokyo); 2009 Jan; 57(1):61-4. PubMed ID: 19122317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quantitative assessment of the significance of molecular mobility as a determinant for the stability of lyophilized insulin formulations.
    Yoshioka S; Aso Y
    Pharm Res; 2005 Aug; 22(8):1358-64. PubMed ID: 16078146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negligible contribution of molecular mobility to the degradation rate of insulin lyophilized with poly(vinylpyrrolidone).
    Yoshioka S; Aso Y; Miyazaki T
    J Pharm Sci; 2006 Apr; 95(4):939-43. PubMed ID: 16493588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta-relaxation of insulin molecule in lyophilized formulations containing trehalose or dextran as a determinant of chemical reactivity.
    Yoshioka S; Miyazaki T; Aso Y
    Pharm Res; 2006 May; 23(5):961-6. PubMed ID: 16715386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of the molecular mobility and protein stability of freeze-dried gamma-globulin formulations on the molecular weight of dextran.
    Yoshioka S; Aso Y; Kojima S
    Pharm Res; 1997 Jun; 14(6):736-41. PubMed ID: 9210190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral diffusion of the phospholipid molecule in dipalmitoylphosphatidylcholine bilayers. An investigation using nuclear spin--lattice relaxation in the rotating frame.
    Fisher RW; James TL
    Biochemistry; 1978 Apr; 17(7):1177-83. PubMed ID: 580765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of sugars on the molecular motion of freeze-dried protein formulations reflected by NMR relaxation times.
    Yoshioka S; Forney KM; Aso Y; Pikal MJ
    Pharm Res; 2011 Dec; 28(12):3237-47. PubMed ID: 21706266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of high molecular mobility of poly(vinyl alcohol) on protein stability of lyophilized gamma-globulin formulations.
    Yoshioka S; Aso Y; Nakai Y; Kojima S
    J Pharm Sci; 1998 Feb; 87(2):147-51. PubMed ID: 9519145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular motions in sucrose-PVP and sucrose-sorbitol dispersions: I. Implications of global and local mobility on stability.
    Bhattacharya S; Suryanarayanan R
    Pharm Res; 2011 Sep; 28(9):2191-203. PubMed ID: 21499981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature dependence of bimolecular reactions associated with molecular mobility in lyophilized formulations.
    Yoshioka S; Aso Y; Kojima S
    Pharm Res; 2000 Aug; 17(8):925-9. PubMed ID: 11028936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling between chemical reactivity and structural relaxation in pharmaceutical glasses.
    Shamblin SL; Hancock BC; Pikal MJ
    Pharm Res; 2006 Oct; 23(10):2254-68. PubMed ID: 16941232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques.
    van Drooge DJ; Hinrichs WL; Visser MR; Frijlink HW
    Int J Pharm; 2006 Mar; 310(1-2):220-9. PubMed ID: 16427226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.