BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 14601400)

  • 1. [Molecular mechanisms of stabilizing proteolytic enzymes. Model of a thermolysin-like microbial metalloproteinase].
    Demidiuk IV; Zabolotskaia MV; Safrina DR; Kostrov SV
    Bioorg Khim; 2003; 29(5):461-9. PubMed ID: 14601400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Destructive twisting of neutral metalloproteases: the catalysis mechanism of the Dispase autolysis-inducing protein from Streptomyces mobaraensis DSM 40487.
    Fiebig D; Storka J; Roeder M; Meyners C; Schmelz S; Blankenfeldt W; Scrima A; Kolmar H; Fuchsbauer HL
    FEBS J; 2018 Nov; 285(22):4246-4264. PubMed ID: 30171661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of site-directed mutagenesis of the surface residues Gln128 and Gln225 of thermolysin on its catalytic activity.
    Tatsumi C; Hashida Y; Yasukawa K; Inouye K
    J Biochem; 2007 Jun; 141(6):835-42. PubMed ID: 17405799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying common metalloprotease inhibitors by protein fold types using Fourier transform mass spectrometry.
    Mitchell JK; Pitcher D; McArdle BM; Alnefelt T; Duffy S; Avery V; Quinn RJ
    Bioorg Med Chem Lett; 2007 Dec; 17(23):6521-4. PubMed ID: 17933532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium chloride enhances markedly the thermal stability of thermolysin as well as its catalytic activity.
    Inouye K; Kuzuya K; Tonomura B
    Biochim Biophys Acta; 1998 Oct; 1388(1):209-14. PubMed ID: 9774734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of gentlyase, the neutral metalloprotease of Paenibacillus polymyxa.
    Ruf A; Stihle M; Benz J; Schmidt M; Sobek H
    Acta Crystallogr D Biol Crystallogr; 2013 Jan; 69(Pt 1):24-31. PubMed ID: 23275160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational dynamics of free and catalytically active thermolysin are indistinguishable by hydrogen/deuterium exchange mass spectrometry.
    Liu YH; Konermann L
    Biochemistry; 2008 Jun; 47(24):6342-51. PubMed ID: 18494500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A zymographic study of metalloprotease activities in extracts and extracellular secretions of Leishmania (Viannia) braziliensis strains.
    Cuervo P; Sabóia-Vahia L; Costa Silva-Filho F; Fernandes O; Cupolillo E; DE Jesus JB
    Parasitology; 2006 Feb; 132(Pt 2):177-85. PubMed ID: 16197592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of myoglobin by polymeric artificial metalloproteases containing catalytic modules with various catalytic group densities: site selectivity in peptide bond cleavage.
    Yoo CE; Chae PS; Kim JE; Jeong EJ; Suh J
    J Am Chem Soc; 2003 Nov; 125(47):14580-9. PubMed ID: 14624608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the catalytic roles of the polypeptide regions in the active site of thermolysin and generation of the thermolysin variants with high activity and stability.
    Kusano M; Yasukawa K; Inouye K
    J Biochem; 2009 Jan; 145(1):103-13. PubMed ID: 18974160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the Internal Dynamics of Metalloproteases Provides New Insights on Their Function and Evolution.
    Carvalho HF; Roque AC; Iranzo O; Branco RJ
    PLoS One; 2015; 10(9):e0138118. PubMed ID: 26397984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the subsite-structure of vimelysin and thermolysin using FRETS-libraries.
    Oda K; Takahashi T; Takada K; Tsunemi M; Ng KK; Hiraga K; Harada S
    FEBS Lett; 2005 Sep; 579(22):5013-8. PubMed ID: 16139276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanism of the inhibitory effect of cobalt ion on thermolysin activity and the suppressive effect of calcium ion on the cobalt ion-dependent inactivation of thermolysin.
    Hashida Y; Inouye K
    J Biochem; 2007 Jun; 141(6):879-88. PubMed ID: 17405797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional proteomics on zinc-dependent metalloproteinases using inhibitor probes.
    Klein T; P Geurink P; S Overkleeft H; K Kauffman H; Bischoff R
    ChemMedChem; 2009 Feb; 4(2):164-70. PubMed ID: 19072819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The thermolysin family (M4) of enzymes: therapeutic and biotechnological potential.
    Adekoya OA; Sylte I
    Chem Biol Drug Des; 2009 Jan; 73(1):7-16. PubMed ID: 19152630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteolytic, edematogenic and myotoxic activities of a hemorrhagic metalloproteinase isolated from Bothrops alternatus venom.
    Gay CC; Leiva LC; Maruñak S; Teibler P; Acosta de Pérez O
    Toxicon; 2005 Oct; 46(5):546-54. PubMed ID: 16137735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of the pH-dependence of thermolysin activity as examined by site-directed mutagenesis of Asn112 located at the active site of thermolysin.
    Kusano M; Yasukawa K; Hashida Y; Inouye K
    J Biochem; 2006 Jun; 139(6):1017-23. PubMed ID: 16788052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinants for psychrophilic and thermophilic features of metallopeptidases of the M4 family.
    Khan MT; Sylte I
    In Silico Biol; 2009; 9(3):105-24. PubMed ID: 19795569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Haemophilus paragallinarum secretes metalloproteases.
    Rivero-García PC; Cruz CV; Alonso PS; Vaca S; Negrete-Abascal E
    Can J Microbiol; 2005 Oct; 51(10):893-6. PubMed ID: 16333350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of salts on the solubility of thermolysin: a remarkable increase in the solubility as well as the activity by the addition of salts without aggregation or dispersion of thermolysin.
    Inouye K; Kuzuya K; Tonomura B
    J Biochem; 1998 May; 123(5):847-52. PubMed ID: 9562615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.