These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
630 related articles for article (PubMed ID: 14601414)
1. Fatty acid trophic markers in the pelagic marine environment. Dalsgaard J; St John M; Kattner G; Müller-Navarra D; Hagen W Adv Mar Biol; 2003; 46():225-340. PubMed ID: 14601414 [TBL] [Abstract][Full Text] [Related]
2. Predatory zooplankton on the move: Themisto amphipods in high-latitude marine pelagic food webs. Havermans C; Auel H; Hagen W; Held C; Ensor NS; A Tarling G Adv Mar Biol; 2019; 82():51-92. PubMed ID: 31229150 [TBL] [Abstract][Full Text] [Related]
3. Dependency of Antarctic zooplankton species on ice algae-produced carbon suggests a sea ice-driven pelagic ecosystem during winter. Kohlbach D; Graeve M; Lange BA; David C; Schaafsma FL; van Franeker JA; Vortkamp M; Brandt A; Flores H Glob Chang Biol; 2018 Oct; 24(10):4667-4681. PubMed ID: 29999582 [TBL] [Abstract][Full Text] [Related]
4. Insufficient evidence for BMAA transfer in the pelagic and benthic food webs in the Baltic Sea. Zguna N; Karlson AML; Ilag LL; Garbaras A; Gorokhova E Sci Rep; 2019 Jul; 9(1):10406. PubMed ID: 31320701 [TBL] [Abstract][Full Text] [Related]
5. [Role of essential fatty acids in trophometabolic interactions in the freshwater ecosystems (a review)]. Sushchik NN Zh Obshch Biol; 2008; 69(4):299-316. PubMed ID: 18792646 [TBL] [Abstract][Full Text] [Related]
6. Dietary fatty acid transfer in pelagic food webs across trophic and climatic differences of Chinese lakes. Zhang Y; Feng K; Song D; Wang Q; Ye S; Liu J; Kainz MJ Sci Total Environ; 2024 Feb; 913():169562. PubMed ID: 38142998 [TBL] [Abstract][Full Text] [Related]
7. Selective transfer of polyunsaturated fatty acids from phytoplankton to planktivorous fish in large boreal lakes. Strandberg U; Hiltunen M; Jelkänen E; Taipale SJ; Kainz MJ; Brett MT; Kankaala P Sci Total Environ; 2015 Dec; 536():858-865. PubMed ID: 26282609 [TBL] [Abstract][Full Text] [Related]
8. Impacts of elevated terrestrial nutrient loads and temperature on pelagic food-web efficiency and fish production. Lefébure R; Degerman R; Andersson A; Larsson S; Eriksson LO; Båmstedt U; Byström P Glob Chang Biol; 2013 May; 19(5):1358-72. PubMed ID: 23505052 [TBL] [Abstract][Full Text] [Related]
9. Horizontal and vertical food web structure drives trace element trophic transfer in Terra Nova Bay, Antarctica. Signa G; Calizza E; Costantini ML; Tramati C; Sporta Caputi S; Mazzola A; Rossi L; Vizzini S Environ Pollut; 2019 Mar; 246():772-781. PubMed ID: 30623833 [TBL] [Abstract][Full Text] [Related]
10. Consistent trophic amplification of marine biomass declines under climate change. Kwiatkowski L; Aumont O; Bopp L Glob Chang Biol; 2019 Jan; 25(1):218-229. PubMed ID: 30295401 [TBL] [Abstract][Full Text] [Related]
11. Fatty acid profiles of more than 470 marine species from the Southern Hemisphere. Nichols PD; Pethybridge HR; Zhang B; Virtue P; Meyer L; Dhurmeea Z; Marcus L; Ericson JA; Hellessey N; Every S; Wheatley K; Parrish CC; Eisenmann P; Baylis AMM; Bradshaw CJA; Bierwagen SL; Young JW; Couturier LIE; Rohner CA; Groß J; Waugh C; Phleger CF; Jackson C; Jackson G; Huveneers C; Bengtson Nash S; Brock M; Mansour P Ecology; 2023 Jan; 104(1):e3888. PubMed ID: 36208280 [TBL] [Abstract][Full Text] [Related]
12. Direct and indirect effects of elevated CO2 are revealed through shifts in phytoplankton, copepod development, and fatty acid accumulation. McLaskey AK; Keister JE; Schoo KL; Olson MB; Love BA PLoS One; 2019; 14(3):e0213931. PubMed ID: 30870509 [TBL] [Abstract][Full Text] [Related]
13. Zooplankton grazing pressure is insufficient for primary producer control under elevated warming and nutrient levels. Gusha MNC; Dalu T; Wasserman RJ; McQuaid CD Sci Total Environ; 2019 Feb; 651(Pt 1):410-418. PubMed ID: 30240923 [TBL] [Abstract][Full Text] [Related]
14. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Müller-Navarra DC; Brett MT; Liston AM; Goldman CR Nature; 2000 Jan; 403(6765):74-7. PubMed ID: 10638754 [TBL] [Abstract][Full Text] [Related]
15. Application of nitrogen stable isotope analysis in size-based marine food web and macroecological research. Jennings S; Barnes C; Sweeting CJ; Polunin NV Rapid Commun Mass Spectrom; 2008 Jun; 22(11):1673-80. PubMed ID: 18438766 [TBL] [Abstract][Full Text] [Related]
16. Copepod hatching success in marine ecosystems with high diatom concentrations. Irigoien X; Harris RP; Verheye HM; Joly P; Runge J; Starr M; Pond D; Campbell R; Shreeve R; Ward P; Smith AN; Dam HG; Peterson W; Tirelli V; Koski M; Smith T; Harbour D; Davidson R Nature; 2002 Sep; 419(6905):387-9. PubMed ID: 12353032 [TBL] [Abstract][Full Text] [Related]
17. Trophic dilution of polycyclic aromatic hydrocarbons (PAHs) in a marine food web from Bohai Bay, north China. Wan Y; Jin X; Hu J; Jin F Environ Sci Technol; 2007 May; 41(9):3109-14. PubMed ID: 17539512 [TBL] [Abstract][Full Text] [Related]
18. Multiple vs. single phytoplankton species alter stoichiometry of trophic interaction with zooplankton. Plum C; Hüsener M; Hillebrand H Ecology; 2015 Nov; 96(11):3075-89. PubMed ID: 27070025 [TBL] [Abstract][Full Text] [Related]
19. Metabarcoding analysis of trophic sources and linkages in the plankton community of the Kuroshio and neighboring waters. Kobari T; Tokumo Y; Sato I; Kume G; Hirai J Sci Rep; 2021 Dec; 11(1):23265. PubMed ID: 34853330 [TBL] [Abstract][Full Text] [Related]
20. Distinct trophic ecologies of zooplankton size classes are maintained throughout the seasonal cycle. McLaskey AK; Forster I; Hunt BPV Oecologia; 2024 Jan; 204(1):227-239. PubMed ID: 38219265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]